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Abstract

We use micro-level data on fuel consumption, mileage, and travel mode to study
how plug-in hybrid drivers respond to fuel prices. When fuel prices rise, plug-in hybrids
reduce fuel consumption more than gasoline and diesel cars. They do not proportionally
reduce their mileage; instead, they increase electric charging. Since plug-in hybrids
drive in electric mode for only half the distance suggested by official test cycle values,

fuel prices are effective in improving the environmental performance of these vehicles.
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1 Introduction

Automobile usage imposes substantial negative environmental externalities, accounting for
approximately 25 percent of global oil use and around 10 percent of global energy-related
COgy greenhouse gas emissions in 2023 (International Energy Agency, 2023). The pressure
to address climate change has led major economies to encourage the adoption of cleaner
vehicles, including battery and plug-in hybrid electric vehicles.

Plug-in hybrids, in particular, have been heralded by policymakers as a transition technol-
ogy to aid in the electrification of the transportation sector. Their crossover characteristics
(internal combustion engine combined with a battery) make them attractive to consumers
hesitant to switch to a fully electric car due to concerns about range and the availability of
charging infrastructure. From a policy perspective, plug-in hybrids may represent a “slower
but more plausible path” (The Washington Post, 2024) to mass electrification, allowing for
partial electrification of travel without requiring a full shift in consumer behavior or infras-
tructure. In contexts where charging networks are underdeveloped or long-distance travel is
common, plug-in hybrids can achieve emissions reductions while mitigating range anxiety. By
familiarizing consumers with electric drivetrains and encouraging early adoption of charging
habits, plug-in hybrids can potentially serve as a stepping stone toward full electrification.

Reflecting their appeal, plug-in hybrid sales are now growing at a fast pace in key mar-
kets, including the US and Asia, leading automakers such as GM and Toyota to invest in
plug-in hybrid models.! In the U.S. and Europe, plug-in hybrids account for around half
of the stock of electric vehicles, largely thanks to substantial purchase subsidies. These in-
centives target adoption, while usage subsidies primarily aim to support the development of

charging infrastructure. Usage incentives are generic in their scope; currently, there are no

! According to the U.S. Energy Information Administration, plug-in hybrid sales outpaced battery vehicle
growth in 2023 (eia.gov), a trend echoed in Asia (Asia Pacific). General Motors and Toyota, for instance,
have announced renewed investments in plug-in hybrid models (GM, Toyota).


https://www.eia.gov/todayinenergy/detail.php?id=61004
https://www.just-auto.com/analyst-comment/an-unexpected-event-in-2023-bev-slowdown-and-the-revival-of-hybrids-in-asia-pacific
https://www.thedrive.com/news/gm-reverses-all-in-ev-strategy-to-bring-back-plug-in-hybrids
https://www.forbes.com/sites/brookecrothers/2023/12/24/toyotas-electric-revival-the-2024-rav4-prime-and-prius-prime/

direct policies affecting the intensity of use for plug-in hybrids, such as encouraging driving
in electric mode or penalizing driving in internal combustion mode. Real-world usage data
reveal a striking discrepancy: many plug-in hybrids are driven primarily in internal combus-
tion mode, resulting in fuel consumption and emissions far above official test-cycle figures
(Chakraborty et al., 2020; P16tz et al., 2021; European Commission, 2024). Ironically, these
optimistic official values are used to justify purchase subsidies and calculate manufacturers’
compliance with emission standards.?

In this study, we evaluate how plug-in hybrid usage responds to gasoline prices in the
short run. In a stylized conceptual framework, we show that, unlike drivers of traditional in-
ternal combustion engines, plug-in hybrid drivers can reduce gasoline consumption not only
by driving less but also by charging more and increasing electric-mode mileage. Reliable
estimates of both fuel consumption and mileage elasticities are therefore crucial for under-
standing the response of carbon emissions to fuel prices and for designing effective regulatory
policies to promote plug-in hybrids in electric mode, specifically.

We use detailed micro-level data from a German mobile phone application where users
record fuel consumption, distance traveled, and the price paid for each refueling. The dataset
spans six years (from 2016 to 2021) and comprises 49,443 drivers, around 3 percent of whom
drive a plug-in hybrid. Our sample accounts for about one percent of Germany’s total
stock of plug-in hybrids. Since our data comprises drivers voluntarily engaging with the
application, we assess representativeness using external survey data.

In the first step, we quantify the discrepancy between real-world fuel consumption and
manufacturer-reported values. While gasoline and diesel cars consume 30 to 40 percent more
fuel in real-world driving conditions than reported by manufacturers during controlled testing

cycles, plug-in hybrids feature a striking difference between official and on-road fuel economy

2In the U.S., federal tax incentives available for plug-in hybrids can reach $7,500, depending on the vehicle
price, assembly location, battery component sourcing, and the buyer’s income (US incentives). In Europe,
various incentives are available in the form of purchase subsidies and tax benefits (European incentives).


https://www.fueleconomy.gov/feg/tax2023.shtml
https://alternative-fuels-observatory.ec.europa.eu/

ratings, with an on-road-to-NEDC fuel economy ratio of 2.93, indicating a higher reliance
on combustion mode. The observed share of electric-mode driving is 0.32, compared to the
official NEDC utility factor of 0.67, a gap of 35 percentage points. This lower electric-mode
share increases fuel consumption, implying that real-world COs emissions are approximately
twice as high as official estimates when applying the type-approval formula. We provide a
descriptive analysis of the implications and determinants of the low utility factor for plug-in
hybrids.

In the second step, we assess the impact of fuel prices on fuel demand, focusing on travel
mode (electric versus combustion) for plug-in hybrids. Using detailed vehicle-driver data
and an instrumentation strategy that addresses the endogeneity of fuel prices with respect
to driving behavior, we estimate the elasticities of mileage and fuel consumption. A one
percent price increase reduces fuel consumption by 0.22 percent for gasoline and 0.22 to
0.25 percent for diesel. Our estimates fall within the range of elasticities (—0.16 to —0.37)
reported in prior studies. Most of the reduction in fuel consumption stems from decreased
driving, with fuel-conserving behavior accounting for 12 to 29 percent of the total effect.

Zooming in on plug-in hybrids, we find that the average fuel consumption elasticity is
larger in magnitude than that of gasoline and diesel drivers, ranging between —0.33 and
—0.41. In contrast, the elasticity of mileage is not significantly different from zero. The
elasticity of on-road fuel economy is an order of magnitude larger for plug-in hybrids than
gasoline and diesel vehicles, suggesting that the observed change in fuel consumption is
unlikely to result solely from fuel-conserving behavior, particularly given the null effect on
mileage. Instead, the evidence points to increased electric-mode usage as the main driver.
Specifically, a 10 percent increase in fuel prices raises the share of kilometers driven in electric
mode by 1.5 percentage points. We calculate that around 89 percent of the improvement in
on-road fuel economy (liters/km) comes from increased charging (shifting to electric driving),

while 11 percent comes from fuel-conserving behavior in fuel mode. Higher fuel prices,



therefore, lead plug-in hybrid drivers to shift toward electric mode without reducing total
driving, thereby enhancing the environmental effectiveness of these vehicles.

However, this effect appears to be short-lived. Estimating a distributed lag model includ-
ing recent past prices, we find no evidence of habit changes in charging behavior in response
to fuel price shocks. This is consistent with experimental findings that electric vehicle drivers
do not form new charging routines in response to price signals Bailey et al. (2023).

Finally, building on the finding that the average electric-mode share is only 32 percent,
we examine the disutility of charging. Focusing on the distribution of drivers’ fixed pref-
erences for gasoline over electric mode after netting out price effects, we show substantial
heterogeneity in charging preferences (“hassle costs”) across drivers.

Our results have important policy implications. First, policies to support the adoption
of plug-in hybrids and calculate compliance with emission regulations by manufacturers
should reflect real-world electric driving shares and emissions.® Second, financial incentives
matter. In particular, policies raising the carbon price on transportation fuels paid by
drivers of plug-in hybrids are an effective tool for increasing the electrification of miles
driven without a significant impact on mileage. Our findings bolster recommendations for
rationalizing carbon prices presented by Rapson and Muehlegger (2023). Third, financial

incentives are proving to be much more critical in encouraging drivers to recharge due to

3For instance, the discrepancy between real-world and official fuel consumption has prompted the Eu-
ropean Commission to require the installation of onboard fuel consumption monitoring devices since 2021
(European Commission, 2024). The data collected so far shows that, for new plug-in hybrid electric vehicles
registered in 2021, the real-world CO2 emissions were, on average, 3.5 times higher than the type-approval
values (100 gram COs/km). The report discusses that the discrepancy is largely due to the fact that these
vehicles are not being charged and driven fully electrically as frequently as assumed. As a consequence,
the Commission has introduced changes to the calculation of the utility factor (the expected share of dis-
tance driven electrically) used to determine emissions during the official test procedure starting in 2025
(Commission Regulation (EU) 2023/443).

4Road fuels currently face lower carbon pricing than electricity in terms of embedded carbon costs per
unit of energy. Under Germany’s national Emissions Trading System, the COq price is fixed at €55/tonne
in 2025 (https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Gesetze/behg_en_bf.pdf). In
contrast, power generators under the EU Emissions Trading System face a market-determined allowance
price, projected to average around €70/tonne in 2025 based on 2024 trends (https://www.ice.com/prod
ucts/197/EUA-Futures/data?marketId=5474739).
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the absence of habit changes. Finally, the high and highly heterogeneous “hassle cost” of
charging underscores that time-saving investments in charging infrastructure can amplify the
effect of fuel price policies. Our findings are complementary to those of Gessner et al. (2024),
who show that increased access to charging (specifically, home charging) substantially boosts
electric charging among hybrid drivers in a company setting, where financial incentives are

irrelevant since the employer covers fuel and electricity costs.

Related literature Our work contributes to four strands of literature.

First, we relate to the work of economists documenting the large discrepancies between
ex-ante estimates produced by engineering models and real-world energy savings: Allcott and
Greenstone (2017), Fowlie et al. (2018), and Reynaert and Sallee (2021). We demonstrate
that monetary incentives play a crucial role in ensuring that plug-in hybrids contribute to
environmental improvements. Ignoring usage incentives to encourage electric driving can
significantly undermine the anticipated reductions in emissions. Specific to plug-in hybrids,
Plotz et al. (2021) provide a systematic review of real-world usage and fuel consumption
of 100,000 vehicles in North America, China, and Europe; they show that the share of
kilometers driven in electric mode by plug-in hybrids is only half the official test cycle values
for private vehicles and even lower for company cars because of the low charging frequency.
The real-world electric range is also lower than estimated from test cycles; these factors raise
tailpipe CO emissions by two to four times. We confirm their findings in our study, adding
an analysis of the determinants of the low share of electric driving. Tsanko (2023) studies
the environmental benefits of subsidizing plug-in hybrids when emissions are higher than
officially estimated.’

Second, we contribute to the literature discussing consumers’ behavioral biases regard-

®Dong and Lin (2012) is an early study based on survey data looking at the charging network’s impact
on plug-in hybrids’ fuel consumption. Raghavan and Tal (2022) also use survey data to investigate the
variables influencing the charging choices of plug-in hybrid owners. Our study uses micro-level data with
more extensive coverage to understand the response of fuel consumption and charging choices to fuel prices.



ing fuel consumption: Allcott and Knittel (2019). The literature has mainly studied the
relationship between fuel prices, fuel economy, and automobile purchases (the adoption mar-
gin): Busse et al. (2013); Allcott and Wozny (2014); Sallee et al. (2016); Grigolon et al.
(2018); Levinson and Sager (2023). Beresteanu and Li (2011) investigate environmental
policies targeting the adoption of hybrid vehicles. Salvo and Huse (2013) study the usage
margin for flex-fuel cars, analysing the discrete choice between ethanol and gasoline at each
refueling and documenting limited switching even when prices approach energy-equivalent
parity. We document a systematic bias in operational usage. Plug-in drivers underutilize
electric mode, despite clear cost savings, indicating behavioral barriers that extend beyond
rational cost-benefit calculations. In a study complementing our work, Gessner et al. (2024)
quantify the impact of home-charging availability on energy use and emissions; specifically,
lowering the hassle cost of charging by providing access to home charging increases electricity
consumption and decreases emissions by 39 percent.

Third, our paper complements a growing literature on the usage of battery vehicles.
Davis (2019), Burlig et al. (2021), and Nehiba (2024) show that electric vehicles tend to
be driven less than other vehicles. Johansen and Munk-Nielsen (2022) and Davis (2022)
provide context for these findings, showing the importance of portfolio complementarities in
the adoption and usage of electric vehicles. While our dataset does not contain information
on multi-vehicle ownership, we leverage its unique high-frequency and panel features to
identify plug-in-hybrid usage patterns, mileage, and charging responses to fuel prices, as
well as habit behavior.

Fourth, we relate to the sizable number of studies investigating how fuel consumption and
mileage respond to fuel prices. Earlier studies mainly relied on aggregate gasoline expenditure
data and cross-sectional variation. Aggregation creates an endogeneity issue, as movements
in demand cause fuel prices and consumption to shift in the same direction. Such correlation

results in an upward bias of the estimated elasticities (Kilian and Zhou, 2023). Table A.I



in the Appendix summarizes selected price elasticity estimates of gasoline demand from
the most recent studies developed in the last decade. These studies mostly use individual-
level data (thus avoiding aggregation biases) or panel-level data at the monthly and state
levels (addressing the endogeneity concerns using instrumental variable techniques); their
elasticity estimates are an order of magnitude larger than earlier ones, ranging between
—0.16 and —0.37. Our estimates are consistent with these studies, yielding a gasoline price
elasticity of approximately —0.22. We contribute to the empirical debate on fuel elasticity by
looking at different fuel and engine types in addition to gasoline (diesel and plug-in hybrids).
Furthermore, we estimate how plug-in hybrid charging responds to fuel prices, which has

not been investigated in the literature so far.

2 Data

Our primary dataset comes from Spritmonitor, an application where users record their refu-
elings and track their effective on-road fuel consumption. Our records range between 2016
and 2021 and refer to cars built in 2016 or thereafter. We observe the refueling date, the
amount fueled, the distance traveled since the previous refueling, the total amount paid, and
whether the users completely or partially filled up their tanks. Figure A.1 in the Appendix
provides a sample screenshot of the application used by drivers to track themselves. The
number of plug-in hybrid models increases toward the end of our sample, as shown in Panel
(a) of Figure A.2, from 22 in 2018 to 49 in 2020. Likewise, the number of drivers in our panel
increases with the build year, from 273 in 2018 to 398 in 2020, as shown in Panel (b) of Fig-
ure A.2. The average number of refuelings per driver-month is around 1.5-1.8 for diesel cars
and 1.4-1.6 for gasoline cars (Figure A.3). Plug-in hybrids shadow gasoline cars throughout
the pre-COVID period. All three series dip in early 2020, reflecting COVID-related travel

slowdowns.



We match the observed vehicle nameplate, engine type (gasoline, diesel, or plug-in hy-
brid), and engine power with additional car characteristics scraped from the General German
Automobile Club (ADAC), adding information on the official fuel economy, emission values,
the driving ranges and charging times (for battery cars). The official fuel economy and
emission values are based on the New European Driving Cycle (NEDC).®

We obtain average daily fuel prices from Tankerkonig (for gasoline grades normal E10,
super, and standard diesel) and fuelo.net (for gasoline grades super plus and premium,
and for diesel premium). We use the prices of different fuel grades to investigate drivers’
switching behavior across grades; this level of detail is usually unavailable in other studies.
Electricity prices are sourced from the German Federal Statistical Office (Statistisches Bun-
desamt); Figure A.4 in the Appendix shows that household electricity prices remained stable
throughout the sample.” Finally, we collect information from the Federal Network Agency
(Bundesnetzagentur) on the number and type of charging points.

Prior to analysis, we process and aggregate the data in several steps. We remove unrep-
resentative or inconsistent entries, outliers, and vehicles that fall outside the scope of our
analysis. In particular, we require at least 365 days between a user’s first and last log entry,
ensuring sufficiently long and consistent reporting, and use the Interquartile Range method
to exclude outliers based on kilometers traveled, price per liter, fuel economy, duration of the
fill-up interval, and total fuel quantity consumed. Additionally, to mitigate the influence of
long-distance trips, the primary analysis excludes records corresponding to the top 30 per-
cent of the distribution of daily distance traveled by fuel and engine type, which corresponds

to 90 km/day for plug-in hybrids. This exclusion removes only 6 percent of the observations

6In September 2018, the European Union gradually adopted the Worldwide harmonized Light vehicles
Test Procedure (WLTP). Using our extensive set of car attributes, we impute the NEDC values for the
vehicles whose fuel economy is expressed in WLTP to harmonize the measure of fuel economy across all cars
in our sample.

7 Although no publicly available dataset provides granular data on public EV-charging prices across Ger-
many, Figure A.5 in the Appendix summarizes the annual charges reported by the German energy provider
LichtBlick for 2017-2021.



from the final sample.® A detailed description of the data-cleaning protocol is available in
Appendix B.

We aggregate our data to the monthly level for two main reasons. First, aggregation
helps minimize the impact of typing errors when labeling a refueling as partial or full; such
mislabeling would limit our ability to analyze data at the refueling level. Second, we com-
pare elasticities across different fuel and engine types (gasoline, diesel, and plug-in hybrids).
Aggregating data monthly is helpful in interpreting our estimated elasticities consistently.

As travel logs are self-reported by users, the precision of monthly aggregates may vary
depending on the number of entries. To reduce the influence of sparsely reported months, we
weight each observation by the number of travel logs recorded in that month. This precision-
weighting approach follows Solon et al. (2015), recommending weights when observation

reliability varies systematically.’

2.1 Sample representativeness

As our sample includes only drivers engaging with the app, one may suspect that these
drivers could be either more motivated to save fuel than the general population or could
drive company cars and, therefore, be required to track their mileage and fuel consumption.
Before removing long-distance trips, our sample’s average annual mileage is 13,360 km for
gasoline cars and 21,180 km for diesel cars. We study how representative our sample is
by comparing these numbers with the averages reported by the German Federal Highway
and Transport Research Institute (Bundesanstalt fiir Straenwesen, BASt). The reported
average annual mileage is between 10,400 km (private) and 15,300 km (company) for gasoline

cars and 17,400 km (private) and 29,100 km (company) for diesel cars. Accounting for the

8In Section 5.2, we show that the results remain robust after extending the cutoff to the top 20 percent of
the distribution, corresponding to a maximum daily mileage of 112 km/day for plug-in hybrids. This cutoff
removes only 3 percent of the observations from the final sample.

9In Section 5.2, we show that our results are robust to the use of OLS instead of weighted linear regressions.



fact that our sample includes only recent cars, our sample averages are very close to the ones
reported for the general population. To further confirm our sample’s representativeness, we
compare mean annual mileage across vehicle segments between BASt private and company
cars and our Spritmonitor sample. We find that, in each segment, the Spritmonitor mean lies
squarely between the BASt private and BASt company means, consistent with our sample
mixing both private and company vehicles.!®

Finally, we use complementary data from the German Mobility Panel, which surveys
a representative sample of the German population once a year to monitor their mobility
patterns. The monthly mileage of vehicles driven in normal circumstances (excluding, for
example, vacation trips) reported in the German Mobility Panel is within the range of the
averages reported in our sample after excluding long-distance trips: 709 km for gasoline cars
and 1,240 km for diesel cars. The monthly mileage in our sample is 669 km for gasoline and

1,024 km for diesel cars.!!

3 The Utility Factor Gap

Our granular data allow us to quantify the discrepancy between real-world fuel consumption
and manufacturer-reported values. Plug-in hybrids combine an internal combustion engine

with an electric motor, allowing the vehicle to switch between or simultaneously use both

0For small and mini cars, the BASt private average is 10,343 km, the BASt company average is 16,283
km, and our sample average is 12,747 km. For compact to upper midsize cars, the corresponding values are
12,933 km, 28,003 km, and 17,162 km. For luxury and sports cars, they are 10,573 km, 19,636 km, and
13,403 km, and for vans and SUVs, they are 13,519 km, 26,135 km, and 15,435 km.

11 We also compare the calculated share of electric driving for the plug-in hybrids we observe in our sample
with other studies. As explained in Section 3, such share is approximately equal to 32 percent. We confirm
that our sample appears to include both private and company vehicles. P16tz et al. (2020) report an average
share of electric driving of 18 percent for German company cars and 43 percent for private vehicles. Gessner
et al. (2024) report a similar utility factor (21 percent) for a sample of 3,519 hybrid company cars; in their
data, fuel and charging expenditures are covered by the employer. This is not often the case in Germany; for
some companies, drivers might not even have a choice but to pay privately to charge their vehicles at home
(while the employer covers fuel costs). Company cars constitute 10 to 15 percent of the total passenger car
fleet in Germany (Kraftfahrt-Bundesamt, 2023).

10



power sources based on driving conditions and needs. Typically, plug-in hybrids operate
primarily on electric power during city driving (below 50 to 80 km/h, depending on the
car model). For highway travel, rapid acceleration, low battery charge, driving mode (for
example, sport mode), or in cold weather, the gasoline engine engages simultaneously to
provide additional power and conserve battery life. Blending fuel use is governed by software.
To study the usage behavior of drivers of plug-in hybrids, we introduce the utility factor.
We define the utility factor as the share of kilometers driven in electric mode. Because of the
simultaneous use of both power sources, the utility factor of hybrids needs to be calculated,
as it cannot be directly inferred from the data, even when observing drivers’ recharging and
refueling patterns. Specifically, the utility factor (UF) is defined as follows:
On-road fuel economy

UF=1-— : (1)

Fuel economy ¢

where fuel economy values are measured in liters per 100 km. The variable “On-road fuel
economy” is calculated using the driver’s logs of fuel consumption and mileage and is there-
fore directly observable. The variable “Fuel economycg” refers to the hypothetical fuel
economy measured while the plug-in hybrid operates in charge-sustaining (CS) mode, that
is, when the battery is depleted and the car behaves like a conventional hybrid, mainly re-
lying on the internal combustion engine. The denominator of Equation (1) is therefore not
directly observable because of the simultaneous engagement of electric and internal combus-
tion modes.

To calculate the denominator, existing studies (Plotz et al., 2020; Tietge et al., 2019)
use the official fuel economy in charge-sustaining mode from the NEDC test cycles, adjusted
by a factor that addresses the discrepancy between NEDC values, calculated in a controlled

environment, and the real-world fuel consumption of a plug-in hybrid operating like a con-

11



ventional hybrid. Accordingly, they approximate the utility factor as:

On-road fuel economy

¢ - Fuel economypgC’

UF~1-

where ¢ is a correction factor accounting for the gap between NEDC and real-world perfor-
mance in charge-sustaining mode.!? These studies approximate the correction factor ¢ at
around 1.5 (that is, a 50% increase), based on the discrepancy between on-road and official
fuel economy values for hybrid electric vehicles that are not externally chargeable and there-
fore operate exclusively in charge-sustaining mode. This assumption is optimistic, as a 50%
deviation exceeds the average gap observed for conventional vehicles.'® Additionally, it does
not account for variation in discrepancy due to specific driving conditions, such as weather
or vehicle age.

To improve on this, we use non-chargeable hybrids in our dataset to directly approximate
the denominator of Equation (1). In particular, we regress the on-road fuel economy of non-
chargeable hybrids on: (i) the month in which we observe the refueling activity (to account
for the weather conditions), (ii) the vehicle’s official fuel economy, (iii) the vehicle’s class,
(iv) body type, (v) power (kW), (vi) curb weight, and (vii) build year. We then use the re-
gression coefficients to obtain the predicted on-road fuel economy in charge-sustaining mode
for plug-in hybrids. Those predicted values become our denominator, Fuel e/cgnomycsit, in
Equation (1), so that

On-road fuel economy;,

Fuel economy .,

This approach eliminates any reliance on a single, fixed “gap” factor and instead allows the

12Technically, the NEDC fuel economy in charge-sustaining mode is calculated as follows (Plotz et al.,
2022):
NEpC _ Fuel economy N EPC

Fuel economycg - 1— electric range '
electric range+25

13Tietge et al. (2019) find that non-rechargeable hybrids consistently exhibit average divergence values
above the levels of conventional power train vehicles.

12



data to speak for themselves. Table A.IIl in the Appendix shows the estimation results. The
linear specification delivers statistically strong predictive accuracy, halving the unexplained
variance relative to a naive average and reducing absolute error to well below one liter per
100 km.*

To assess the robustness of the utility-factor calculation, we recompute this measure using
a wide range of deviation values ¢ € {1.3;1.5;1.7}; the lower end (1.3, corresponding to a
30 percent deviation) reflects the mean deviation for conventional vehicles in our data, while
the upper end (1.7, corresponding to a 70 percent deviation) assumes that hybrid car drivers
exhibit less fuel-conserving driving style than conventional car drivers.

Figure A.6 illustrates the monthly average utility factor (UF) that results from our predic-
tion exercise. The line “UF(HEV)” is calculated using the regression-based, month-specific
correction derived from non-chargeable hybrids; the other three lines apply fixed correction
factors ¢ € {1.3;1.5;1.7} for comparison. Our regression-based utility factor closely follows
the series based on the lower deviation value (¢ = 1.3).

Some plug-in hybrids allow drivers to manually switch between electric and internal
combustion modes (in low-speed driving conditions), giving them more control over their
driving preferences. More generally, drivers need to recharge the battery for hybrids to
operate efficiently in electric mode. Without regular charging, the vehicle will default to
using the internal combustion engine more frequently, even at lower speeds, thereby reducing
the share of electric kilometers and lowering the utility factor. Hence, the utility factor is
closely linked to driver behavior, particularly the decision to recharge.

Table 1 presents the summary statistics. On-road fuel consumption for vehicles of all

fuel types exceeds official NEDC estimates, consistent with previous studies (Reynaert and

14WWe re-estimated the specification using two machine-learning algorithms: random forest and extreme-
gradient boosting, using the same set of covariates and five-fold cross-validation. The out-of-sample root-
mean-square error for OLS averages 0.65 liter /100 km, while Random Forest and XGBoost yield an econom-
ically negligible difference. Given the absence of predictive gains and the easier interpretability of OLS, we
retain the linear model in the main analysis.

13



Sallee, 2021; Plotz et al., 2018). The ratio of on-road to NEDC fuel economy is 1.31 for
gasoline and 1.41 for diesel vehicles, implying that real-world fuel use is 31 to 41% higher
than reported under controlled test cycles. Plug-in hybrids (PHEVSs) exhibit the largest
discrepancy, with an on-road-to-NEDC fuel economy ratio of 2.93, indicating a higher reliance
on combustion mode. The observed utility factor (share of electric-mode driving) is 0.32,
compared to the official NEDC utility factor of 0.67, a gap of 35 percentage points. This lower
electric-mode share increases fuel consumption and implies that real-world CO, emissions
are approximately 2.1 times higher than official estimates when applying the type-approval
formula, contributing to the elevated fuel economy ratio.?

Panel (a) of Figure 1 plots the histogram of monthly utility factors for each driver—vehicle;
the mass point at zero indicates that many drivers never charge their plug-in hybrid. In
addition, only 23 percent of drivers achieve electric-mode shares above 50 percent in any
given month. Panel (b) shows each driver’s average utility factor for each vehicle-driver
throughout the sample period. Here, the zero mass diminishes. Still, a substantial share of

drivers charge only occasionally.

15The official NEDC utility factor assumes that 67% of driving is in electric mode with near-zero tailpipe
CO, emissions, while the observed utility factor indicates only 32% electric-mode driving. Using the type-
approval formula, actual COs emissions are 0.67/0.32 ~ 2.1 times higher than official estimates. The
on-road/NEDC fuel economy ratio of 2.93 (4.70 vs. 1.67 liters/100 km) is higher because it reflects both the
lower utility factor and less efficient real-world driving in fuel mode.

14



Table 1: Summary statistics

PHEV Gasoline Diesel

Mean SD Mean SD Mean SD

Fueling level data

Fuel usage (liter/month) 41.96 26.29 49.31 25.53  65.62 33.73
Monthly Mileage (km) 909 468 669 333 1,024 520
Annual Mileage (km) 10,914 5,611 8,025 3,999 12,289 6,245
On-road fuel economy (liter/100km)  4.70 1.84 7.50 1.62 6.51 1.16
NEDC fuel economy (liter/100km) 1.67 0.37 5.74 1.08 4.62 0.68
On-road/NEDC fuel economy 2.93 1.32 1.31 0.21 1.41 0.19
Utility factor (Official - NEDC) 0.67 0.05

Utility factor (HEV data) 0.32 0.22

Fuel price (€/liter) 1.313 0.140 1.296 0.138 1.154 0.123
Fuel price (IV1, €/liter) 1.345 0.116  1.358 0.112 1.185 0.108
Fuel price (IV2, €/liter) 1.343 0.116  1.357 0.113 1.183 0.109

Sample sizes
Number of observations 25,426 784,212 357,731
Number of drivers 1,494 33,027 14,922

The table reports summary statistics of the main variables. Mean and standard deviation (SD) of fuel use,
mileage, fuel-economy metrics, utility factors, and fuel prices for plug-in hybrids (PHEVs), gasoline cars,
and diesel cars; the unit of observation is a driver-month, with sample sizes reported at the bottom.

Figure 1: Utility factor analysis
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The figure reports: in Panel (a), the histograms of monthly utility factors for each vehicle-driver; in Panel
(b), the average utility factors for each vehicle-driver throughout the sample period.
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3.1 Implications of the utility factor gap

The discrepancy between official and real-world utility factors weakens emission-based policy
instruments for plug-in hybrids. As actual tailpipe carbon dioxide emissions are approxi-
mately twice as high as the official estimates, a plug-in hybrid rated at 40 g/km CO5 would
in reality emit on the order of 80g/kmCOs. Such a level exceeds the 50g/km CO, to
60 g/km CO; thresholds that condition purchase subsidies and favourable taxation in Bel-
gium, France, and Germany, implying that a large share of the current hybrid fleet would
forfeit these benefits if real-world emissions were used. Additionally, the European Union’s
Regulation (EU) 2019/631 sets fleet-wide targets for the average CO; emissions from all new
passenger cars. Manufacturers rely on the low official emissions ratings of plug-in hybrids
to comply with these stringent targets. Acknowledging the issue, the European Commission
plans to revise the utility-factor schedule in 2025 to reflect on-road behavior more accurately
(European Commission, 2024).

In the United States, up to 2022 federal tax credits for plug-in hybrid electric vehicles
are not directly tied to emissions (Internal Revenue Service, 2023), sidestepping the issue of
misreported emissions. However, the approach still does not account for the environmental

impact of plug-in hybrids when operated predominantly in gasoline mode.

3.2 Sources of the Utility Factor Gap

Why do drivers charge their plug-in hybrids infrequently? We provide two descriptive facts
to answer this question. First, we establish that recharging plug-in hybrids is cheaper than
refilling the tank. We calculated the difference in usage cost per 100 km for all plug-in
hybrid users in our sample, assuming a fuel price of €1.37 per liter (the average fuel price

in 2021) and an electricity price of €0.30 per kWh.!® Figure A.7 in the Appendix plots the

16The electricity price of €0.30 per kWh is higher than what most households paid in Germany in 2021
to reflect that some charging may occur at higher prices at public chargers.
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kernel density of cost differences (€ per 100 km) between using fuel and electricity across
users. On average, using electricity is €2.9 per 100 km cheaper. For a driver traveling
10,000 km annually, exclusively using the electric mode would imply cost savings of about
€290 relative to combustion-mode driving. The dashed line shows an adjusted calculation
that accounts for deviations from official fuel economy values, which slightly increases the
estimated savings.

Second, we provide further descriptive evidence on the determinants of the utility fac-
tor. Analyzing the charging behavior of a sample of plug-in hybrid drivers for 30 days,
Chakraborty et al. (2020) find that vehicle characteristics (driving range) and the avail-
ability and cost of charging impact charging decisions. We estimate a regression model for
fractional dependent variables (Papke and Wooldridge, 1996) and regress the monthly utility
factor on: (i) an indicator identifying that the average daily kilometers in a month exceed-
ing twice the electric range; (ii) an indicator identifying drivers whose mileage is above the
95" percentile of the mileage distribution to capture heavy users (potentially, company car
drivers); and (iii) the monthly density (in km?) of public charging points suitable for plug-in
hybrid charging.

Column 1 of Table A.III shows that the utility factor is lower when: (i) car owners
frequently drive beyond the car’s range (by 10.3 percentage points); (ii) the car is, in general,
heavily driven (by 2.1 percentage points). A 0.01 increase in charging-point density (roughly
one additional station per 100 km?) is associated with a 1.7 percentage-point increase in the
utility factor. In column 2 of Table A.III, we add driver-specific fixed effects; the effect of
the availability of charging points persists.

These descriptive regressions help explain the variation in the utility factor across drivers
and the relatively small share of electric charging. Although our sample is unique for the level
of detail, the current data cannot fully reveal the importance of these drivers and disentangle

them from other behavioral aspects, as we do not have driver-specific attributes. While
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electricity is a cheaper input than conventional fuel, drivers still prefer internal-combustion
mode, suggesting significant “hassle costs” associated with charging (and, as a consequence,
using electricity as an input to drive). In Section 6, we extend the analysis to quantify these

hassle costs. Our findings reveal substantial heterogeneity across drivers.

4 Conceptual Framework

We develop a stylized framework to explore why the elasticity of fuel consumption and
mileage with respect to fuel prices may differ between drivers of internal combustion engines
and plug-in hybrids. We show that plug-in hybrid vehicle drivers can substitute toward elec-
tric mileage as gasoline prices increase, thereby mitigating the need to reduce total mileage;
in contrast, combustion engine drivers can only respond by cutting mileage.

We model the choice of mode (electric or gasoline) and mileage within a continuous-
discrete framework (Dubin and McFadden, 1984), reflecting the fact that these choices are
interrelated. A plug-in hybrid driver is assumed to choose the mode (electric or gasoline)
and the mileage that, in combination, provide the greatest utility. The mode and mileage
choices are made jointly to maximize utility, reflecting that mileage is conditional on mode
and mode affects the marginal cost of driving.

Consider the following indirect utility specification for a driver choosing alternative j =

E, G, that is, electric E or gasoline G mode:

Uj =y — V;(p;) + ¢,

A -,
Vi(p;) = ﬁpj ",
J

where y denotes income (additive and separable), V;(p;) the disutility from operating costs,
increasing in price p;, and €; a mode-specific random utility component; the term 7; denotes

the price elasticity of consumption for mode j (gasoline or electricity) and A; a preference
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parameter.'”

The conditional demand for mileage in mode j is obtained via Roy’s identity:

R —

0. — — A,
’ oU(p;, ) oy 7P

We now turn to the mode choice probabilities. Assuming that ¢; is i.i.d. according to a

Type 1 Extreme Value distribution, we can write the mode j choice probability as:

_exp(=V(p))
Zk:E,G exp(—Vi(px))

Sj

Total mileage 6 is given by the weighted average of conditional demands with the choice

probabilities as weights:
0(pe,pc) = sefe + scla-

4.1 Mileage Elasticity to Gasoline Prices

The elasticity of total mileage with respect to gasoline price is defined as:

_ 99 re

which can be expressed as follows:

sq0 sa(l —sq)0 O — 0
M= —no GHG " o a) ZPG(E a)

N J/ N J/

TV TV
‘Within-mode effect Cross-mode substitution

The elasticity can be decomposed into two components: (i) within-mode effect: even if the

plug-in driver continues to use gasoline mode, a higher gasoline price reduces the conditional

"Price p; is expressed in utility units.
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mileage demand 6 through standard price sensitivity 7g. Since only a fraction sg of total
trips (and only the conditional mileage s on those trips) are affected, the within-mode
response is scaled by % < 1. When gasoline prices rise, the conditional demand reacts
only to the fraction of trips taken in combustion mode. This effect unambiguously makes
the mileage elasticity less negative; (ii) cross-mode substitution effect: higher gasoline prices
also shift the probability of choosing gasoline mode sg downward, increasing the likelihood
of choosing electric mode sg. If conditional mileage demands (which we do not observe in
the data) differ between modes (6r # 0¢), this substitution affects total mileage. If 05 > 6,
a positive substitution effect further mitigates mileage reduction. If 8z < 6g, substitution

could amplify mileage reduction.

Comparison with an internal combustion engine driver For a driver restricted to
gasoline mode (sg =1, sg = 0):

0 = s(;Hg,

Therefore, the elasticity of mileage with respect to gasoline prices is simply:

N = —MNa

Compared to internal combustion engine drivers, plug-in hybrid drivers may exhibit a muted
response in total mileage to rising gasoline prices because they can substitute toward elec-
tric driving rather than solely reducing mileage. This substitution channel is absent for

combustion-only vehicles, where the elasticity is driven entirely by the within-mode response.
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4.2 Fuel consumption elasticity to gasoline prices

Define gasoline consumption as the liters used in gasoline mode (assuming constant fuel
efficiency):
F = sagba,

where we assume 6 implicitly adjusts the unit to account for constant fuel economy (liters
per kilometer).
The elasticity of gasoline consumption with respect to pg is:

8F]£

" ope F

The elasticity of fuel consumption with respect to gasoline prices can be expressed as

follows:
= —ng  —(1—se)lepc
~— A
Demand response Mode switching

Again, the elasticity can be decomposed into two terms: (i) the first term (—ng) is the
standard price elasticity of gasoline demand conditional on mode choice; (ii) the second term

is the additional reduction in fuel consumption from drivers switching to electric mode.

Comparison with an internal combustion engine driver For a pure gasoline driver

(s =1, sgp = 0), the elasticity of fuel consumption ng reflects only the direct effect:

nr = —MNa (2)
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4.3 Numerical Example

We propose a simple numerical example to illustrate our framework. We assign parameter
values that result in a share of electric driving of approximately 0.37, reflecting the low use
of plug-in hybrid in electric mode observed in the data (Section 2).

Results are summarized in Table 2. Plug-in hybrid drivers exhibit an inelastic mileage
response (19 = —0.03) compared to internal combustion engine drivers (7 = —0.30). Fuel
consumption elasticity is more negative for plug-in vehicles (np = —0.33) than for inter-
nal combustion engine drivers (nr = —0.30), as mode switching amplifies the reduction in

gasoline use.

Table 2: Numerical example: parameters and computed values

PHEV ICE

Parameters

Ap 4.00 -

Ag 0.50 0.50

ne 0.30 -

nG 0.30 0.30

pa ($/km) 1.00 1.00

pr (8/km) 050 -
Mileage

Share electric (%) 0.37 0.00
Elasticities

Mileage (ng) -0.03 -0.30

Fuel Consumption (ng) -0.33 -0.30

The table reports a numerical example, including parameters, the share of electric driving, and elasticities
of mileage and fuel consumption with respect to gasoline prices for plug-in hybrid electric vehicles (PHEV)
and internal combustion engine vehicles (ICE).
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5 Empirical Elasticity Estimates

5.1 Empirical design

To study the impact of fuel prices on fuel demand, we regress measures of fuel consumption,
travel distance, and travel mode (electric versus fuel) on fuel prices. We begin with the
following specification:

Vi = a+ B X In(Py) + v + n; + i, (3)

where In(P;;) represents the log of per-liter fuel price paid by driver i in month ¢, 7, are
time fixed effects (year and month) controlling for unobserved time-varying effects, and 7;
are driver fixed effects controlling for any unobserved driver-specific characteristics affecting
the relationship between our variables of interest and fuel prices. Each driver is associated
with only one vehicle, so the unit of observation is driver-vehicle-month.

We define four outcome variables, y;: (i) the log of per-month fuel consumption (in
liters); (ii) the log of per-month mileage (in km); (iii) the log of per-month on-road fuel
economy; and (iv) the per-month utility factor for plug-in hybrids, namely the share of
kilometers driven in electric mode. In all specifications, we cluster the standard errors at
the driver level and weight by the number of fueling logs recorded by each user in month t.
We do not include the electricity prices as a control because they exhibit very little variation

throughout the sample period: see Figure A.4 in the Appendix.'®

Identification Thanks to the granularity of our data, our coefficient of primary interest

is identified by the within-driver deviations in fuel prices from their own average. Our fixed

18In robustness checks, we include logged electricity prices and the logged number of charging stations as
controls. The inclusion of these additional covariates does not substantially alter our results. Nehiba (2024)
finds that a 10% increase in electricity prices results in a modest 0.82% reduction in mileage for electric
vehicles. Bushnell et al. (2022) document that gasoline prices have a larger effect on electric vehicle adoption
than electricity prices, as the link between vehicle use, home charging, and electricity bills appears to be less
well understood by consumers.
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effects at the month and year levels absorb persistent differences in fuel prices. Similarly
to Knittel and Tanaka (2021), heterogeneity across drivers generating a correlation between
fuel consumption and fuel prices does not threaten identification.

While posted fuel prices are exogenous for drivers, an endogeneity concern remains, as
the fuel prices drivers pay may be endogenous to their individual fuel consumption and
mileage. First, consumers may adjust their search behavior in response to increased fuel
prices, resulting in a downward bias in elasticity estimates.!?

In addition, gasoline and diesel are offered in different grades or quality levels. Modern
cars can use any quality level without resulting in engine damage, and most gas stations
in Germany offer at least standard and premium grades of gasoline.?’ Much like search
intensity, drivers can switch to a cheaper, lower-grade fuel when prices increase. In our
setting, we find empirical evidence of consumers switching fuel grades when prices change.
Among gasoline users, including drivers of gasoline plug-in hybrids, around 40 percent use
more than one fuel grade during the sample period, and 11.0 percent switch fuel grades
within a quarter. We regress the driver’s quarterly shares of fuel grades on the prices of the
fuel grades. We observe four grades of gasoline (normal, super, super plus, and premium)
and two grades of diesel (normal and premium). Table A.IV in the Appendix shows that
price changes are associated with switching across fuel grades. For instance, column 1 of
the table shows that drivers reduce their share of normal grade when the price of normal
gasoline increases (holding the price of other grades fixed). The same pattern holds for the
other grades.

Finally, long-distance travel, such as highway or rural driving, may expose drivers to

19This concern is probably not of particular importance in our setting. Using data on search queries
in 2015 from a German smartphone application that enables users to compare fuel prices across stations,
Montag et al. (2023) find that online search intensity did not correlate with price levels. In addition, Figure
A.8 in the Appendix shows that self-reported fuel prices closely match average posted fuel prices, and the
discrepancy between effective and posted fuel prices does not systematically increase when prices rise.

20Using a lower-grade fuel when the premium is recommended slightly affects the fuel economy and the
car’s performance.
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higher fuel prices due to limited competition or availability, introducing an upward bias.

To address potential endogeneity in consumer-level fuel prices, we construct two instru-
mental variables. First, following Knittel and Tanaka (2021), we instrument each driver’s
reported fuel price with the daily national average price of the same fuel grade on the
purchase date. For each refueling transaction, we replace the self-reported price with the
corresponding national average for that fuel grade on that day, and then aggregate to the
monthly level by computing a volume-weighted average, using liters purchased in each trans-
action as weights. Because refueling dates differ across consumers, this instrument retains
cross-sectional variation in price exposure even after aggregation to monthly data. Second,
to account for endogenous fuel-grade switching, we construct an alternative instrument based
on each driver’s predominant fuel grade, defined as the one used in more than 50% of that
driver’s refueling transactions. For each refueling event, we assign the national average price
of the driver’s predominant grade on that day, regardless of which grade was actually pur-
chased in that instance, and then aggregate these assigned prices to the monthly level using
the same volume-weighted procedure.?!

After accounting for year, month, and driver fixed effects, the identifying variation in
both instruments comes from within-month-year differences across drivers in assigned na-
tional average prices. These differences arise from variation in refueling days and fuel grade
composition. For plug-in hybrids, around 70 percent of the variation in reported prices is
absorbed by the fixed effects, and between 69 and 73 percent of the variation in the instru-
ments (that is, national fuel prices) is absorbed by the fixed effects, leaving the remaining

share available for identification.

21Further details are provided in Appendix B.
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5.2 Results

Table 3 reports the estimation results of Equation (3). The first three columns of Table 3
report the WLS estimates; columns 4 to 6 (“IV 17) report the IV results using the average
fuel prices of the corresponding fuel grade to instrument for the actual price paid; columns
7t09 (“IV 27) report the IV results using the average price of the most used fuel grade as
instrument. The first stage of the IV specifications is reported in Table A.V in the Appendix.
Our two instrumentation strategies produce similar results for estimated elasticities of fuel
consumption and mileage, reflecting the strong correlation between the instruments.

The estimated IV1 and IV2 coeflicients are substantially larger than the WLS estimates
and statistically significant at the one percent level. This suggests that WLS estimates are
attenuated: fuel consumption is positively correlated with prices, likely reflecting driving in
more expensive refueling contexts rather than the causal effects of price. At the same time,
our estimates suggest a limited role for systematic search behavior and grade switching. This
result aligns with findings from previous studies (Knittel and Tanaka, 2021).

For gasoline car drivers, we estimate an elasticity of fuel consumption of approximately
—0.22 and an elasticity of mileage of —0.20. For diesel car drivers, the elasticity of fuel
consumption ranges from —0.22 to —0.25, and the elasticity of mileage ranges from —0.15
to —0.18.

The elasticity of fuel economy (columns 6 and 9) is —0.02 to —0.03 for gasoline and
—0.07 for diesel. These elasticities imply that, for gasoline cars, approximately 88 percent
of the reduction in fuel consumption stems from a decrease in mileage; the remaining 12
percent originates from fuel-conserving measures, such as improved driving and maintenance
behavior. The magnitude is consistent with the findings of Knittel and Tanaka (2021). For
diesel cars, the percentage of reduction in fuel consumption attributable to fuel-conserving

behavior is slightly higher (roughly 29 to 31 percent).
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For plug-in hybrid drivers, the estimated elasticity of fuel consumption is substantially
larger than for gasoline and diesel car users, ranging between —0.33 and —0.41 (we do not
reject the hypothesis that the coefficients are equal in the two specifications). However,
these drivers do not seem to reduce their mileage in response to fuel price increases (their
elasticity of mileage is estimated noisily and close to zero). Notably, a one percent rise
in fuel prices is associated with a 0.25 percent decrease in fuel economy. Given the on-
road/NEDC fuel economy ratio of 2.93, indicating that these vehicles consume nearly three
times more fuel than expected, this decrease is substantial. The elasticity of the fuel economy
deviation ratio is an order of magnitude larger for plug-in hybrids than for gasoline and
diesel vehicles, suggesting that such a significant effect is unlikely to stem solely from fuel-
conserving behavior, especially given the null effect on mileage.

When comparing plug-in hybrids to traditional internal combustion vehicles, plug-in hy-
brids offer an additional margin of adjustment through recharging behavior. Table 4 sug-
gests that a one percent rise in fuel prices leads to a utility factor increase of 0.15 percentage

points.??

Higher fuel prices encourage plug-in hybrid drivers to increase the use of their
vehicles in electric mode through charging. In particular, we calculate that around 89 per-
cent of the improvement in on-road fuel economy (liters/km) comes from increased charging

(shifting to electric driving), while 11 percent comes from fuel-conserving behavior in fuel

mode.??

22 At the mean UF of 0.32, this corresponds to a 46% increase in the share of electric driving (0.148/0.32).
23The decomposition follows from the UF identity:
FE

UF =1— —22% o FE_, 10aa = FEcs(1 — UF)
FEcs

Taking log derivatives with respect to fuel price:

OInFEonrona OWFEcs = 0ln(l — UF)

OlnP ~ 9P OlnP

1

—0.245 = Brpes — 0.217 = Brpes = —0.028
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Table 3: Results

WLS V1 vV 2

In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE)

1) (2) (3) (4) (5) (6) (7) (8) 9)
PHEVs
In(Price) -0.230** -0.157* -0.073* -0.405*** -0.159 -0.245*** -0.329** -0.084 -0.245%**
(0.101) (0.095) (0.039) (0.142) (0.139) (0.052) (0.137) (0.131) (0.049)
R2 0.319 0.213 0.702 0.319 0.213 0.702 0.319 0.213 0.702
Observations 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426
Gasoline
In(Price) -0.069*** -0.059***  -0.010*** -0.220*** -0.197***  -0.023*** -0.225%** -0.198***  -0.027***
(0.018) (0.018) (0.002) (0.024) (0.024) (0.003) (0.023) (0.024) (0.003)
R2 0.242 0.209 0.904 0.242 0.209 0.904 0.242 0.209 0.904
Observations 784,212 784,212 784,212 784,212 784,212 784,212 784,196 784,196 784,196
Diesel
In(Price) -0.117*%* -0.082***  -0.035*** -0.220*** -0.151***  -0.070*** -0.252%** -0.178***  -0.074***
(0.023) (0.023) (0.003) (0.029) (0.029) (0.003) (0.029) (0.029) (0.003)
R2 0.240 0.228 0.878 0.240 0.228 0.878 0.240 0.228 0.878
Observations 357,731 357,731 357,731 357,731 357,731 357,731 357,722 357,722 357,722
Fixed effects
Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (3). The dependent variables are: (i) the log of fuel
consumption (in liters) in columns 1, 4, and 7; (ii) the log of vehicle kilometers traveled (VKT) in columns
2, 5, and 8; and (iii) the log of fuel economy (FE, in liters/100km) in columns 3, 6, and 9. Columns
1, 2, and 3 present the WLS parameter estimates. Columns 4 to 9 are estimated using the instrumental
variable approach. PHEVs: plug-in hybrid electric vehicles. All specifications include driver, year, and
month fixed effects. Standard errors are clustered at the driver level and reported in parentheses. *** **
and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.

Contribution shares:

. 0.217 0.028
Charging effect = 021 89.0% and Fuel-mode effect = 021 = 11.0%

All coefficients are from IV2 specifications in Table 3.
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Table 4: Results — utility factor

WLS IV 1 IV 2
(1) (2) (3)
PHEVs
In(Price) 0.047**  0.148***  (.148***
(0.023)  (0.030) (0.028)
R? 0.664 0.663 0.663

Observations 25,426 25,426 25,426

Fixed effects

Driver Yes Yes Yes
Year Yes Yes Yes
Month Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVs). The
dependent variable is the utility factor UF (the share of driving in electric mode) calculated according to
Equation (1) using the empirical estimation of Fuel economy g based on non-rechargeable HEVs (UF HEV).
All specifications include driver, year, and month fixed effects. Standard errors are clustered at the driver
level and reported in parentheses. ***, ** and * correspond to statistical significance at the 1%, 5%, and
10% levels, respectively.

Implications on CO,; emissions As fuel consumption maps approximately one-to-one
to CO, emissions, the fuel use elasticities can also be interpreted as CO, elasticities.?* In-
creased electrification, driven by a 0.15 percentage point increase in the utility factor (Table
4, IV2), accounts for approximately 66.2% of the CO5 emission reduction for plug-ins. Ad-
ditionally, hybrid owners face lower costs in absorbing fuel price shocks, as they can switch
to electric mode without significantly reducing mileage, unlike gasoline and diesel vehicle
owners. Together, these results suggest that fuel prices are indeed effective at improving the
environmental benefits of plug-in hybrids as they determine a more pronounced reduction
in fuel demand for drivers; at the same time, absorbing fuel shocks is less costly for these

drivers.

24Burning one liter of gasoline emits 2,390g of CO, while burning one liter of diesel emits 2,640g of
CO5. The greenhouse-gas calculations refer exclusively to tailpipe CO5. Charging emissions from electricity
production are outside the scope of this paper and are regulated under the EU ETS.
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Robustness We conduct an extensive set of robustness checks on these results. Our results
are robust to: (i) the use of a range of deviation values (1.3, 1.5, and 1.7) in the denominator
of Equation (1) to calculate the utility factor (Table A.VI in the Appendix); (ii) the inclusion
of observations with long-distance traveled, with a maximum daily mileage of 105.4 km for
plug-in hybrids (Table A.VII and Table A.VIII in the Appendix); (iii) the use of unweighted
regression methods (Tables A.IX and A.X in the Appendix); (iv) the use of a linear time
trend (Tables A. XTI and A.XII) ?°; and (v) impact of the COVID-19 pandemic (Tables A.XIII
and A.XIV).

In particular, related to (v), we estimate the following augmented specification:

Yie = a + BiIn(Py) + B [ln(Pit) X It} + 0L + v + M+ gt (4)

where In(Py) is the log of the per-liter fuel price paid by driver i in month ¢, I, = I(t >
March 2020) is the COVID-period indicator, 7; are year-and-month fixed effects, and 7; are
driver (vehicle) fixed effects.

In this formulation, the coefficient 35 captures any change in price-sensitivity after March
2020. Across both WLS and IV estimations, (3, is rather small and statistically indistinguish-
able from zero, confirming that our main estimates are not driven by changes in the fleet
composition that overlap with the pandemic. Similarly, in the utility factor regressions

(Table A.XIV), the post-2020 interactions are again insignificant.

25When using a linear time trend, Table A.XI shows that R? values are lower, indicating that the lin-
ear trend captures less of the time-specific variation in fuel prices and driving behavior compared to year
and month fixed effects. This reduced explanatory power is consistent with Figure A.8, which highlights
significant within-month price fluctuations, such as those during the COVID-19 lockdown in 2020, that a
linear trend may not fully account for, unlike the fixed effects approach. Nevertheless, the results confirm
the direction of the effects.
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5.3 Changes in recharging habits

The evidence thus far suggests that fuel prices have a contemporaneous effect on electric
recharging behavior. To test for the presence of changes in recharging habits, we estimate a

distributed lag model that includes in Equation (3) past fuel prices:

t
UFy =a+ Y BiInPyj+v+mn +ea, (5)
=0
where Pj_; represents the log of per-liter fuel price paid by driver ¢ in month ¢ — j, and
the outcome variable of interest is the utility factor. Table 5 reports the coefficients of the
six most recent past refueling prices paid by the driver; these prices are instrumented using
monthly average prices. The estimates indicate no empirical evidence of habit modifications
due to past price shocks; even the most recent past fuel price does not influence the current
charging behavior. Our findings thus align with evidence from Knittel and Tanaka (2021)

on fuel economy and Bailey et al. (2023) on charging times for electric vehicles.
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Table 5: Changes in recharging habits

Dependent variable

Utility factor (HEV)

)

(2)

®3)

(4)

(5)

(6)

PHEVs
In(Pricet) 0.173***  0.159***  0.175***  0.159**  0.131*  0.181**
(0.050) (0.054) (0.062) (0.065)  (0.073)  (0.074)
In(Prices—1) -0.029 -0.018 -0.060 -0.074 -0.055 -0.097
(0.045) (0.063) (0.072) (0.075)  (0.080)  (0.082)
In(Price;—2) -0.020 -0.041 -0.027 0.006 0.037
(0.050) (0.072) (0.074)  (0.073)  (0.069)
In(Price;—3) 0.048 0.091 0.055 0.019
(0.057) (0.077)  (0.074)  (0.071)
In(Prices—4) -0.040 -0.023 -0.017
(0.055)  (0.082)  (0.077)
In(Price;—s5) -0.033 0.011
(0.063)  (0.076)
In(Pricet—¢) -0.062
(0.060)
R? 0.690 0.704 0.713 0.718 0.728 0.736
Observations 21,177 17,425 14,697 12,578 10,887 9,503
Fixed effects
Driver Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes

The table reports the coefficients of the six most recent prices paid based on the distributed lag model as
specified by Equation (5). The dependent variable is the utility factor. All specifications are estimated
using the instrumental variable approach, where monthly average prices are used as the instrument. All
specifications include fixed effects for driver, year, and month. Standard errors are clustered at the driver
level and reported in parentheses. *** ** and * correspond to statistical significance at the 1%, 5%, and

10% levels, respectively.

32



6 The hassle cost of charging

In Section 2, we showed that the share of electric driving is only 32%. While electricity
is a cheaper input than conventional fuel, drivers still prefer internal-combustion mode,
suggesting significant “hassle costs” associated with charging (and, as a consequence, using
electricity as an input to drive). We specify and estimate a simple discrete choice model of
electric charging versus fueling choice to approximate the distribution of drivers’ hassle costs
associated with charging. Since our data do not support estimating the continuous—discrete
framework in Section 4 (for example, we do not observe the conditional mileage demand by
mode), we instead focus on a simpler discrete choice model of powertrain mode.

On a given trip r, a driver ¢ has the choice j to drive in electric mode, namely charge
the battery (j = E), or in internal combustion mode, namely use fuel because the battery
is empty (j = G). Trips are conducted during a period ¢. The utility that a driver receives
from choice j is given by:

Uijr = capije + nij + &ije + Eijirs (6)

where p;j; is driver i’s expenditure per kilometer associated with charging or refueling in
period t. The driver’s utility also depends on 7;;, denoting individual and mode-specific
unobservables, &;;;, period-specific unobservables, as well as €;j,., an idiosyncratic trip-specific
preference shock. The driver chooses to charge and drive electric if U;g, > U,g,. Assuming
that ;5 is i.i.d. according to a Type 1 Extreme Value distribution, we can write the choice

probability of recharging as follows:

1
1+ exp(an Apy + An; + A&y)’
st

SiEr =

where AIit = X;qt — TiEt- Let 6it = OélApZ‘t + AUZ + A&t
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We aggregate at the period ¢ (month) level. Let R; denote the total number of trips
conducted by driver ¢ within the period ¢ and 6, the trip distance. We set s;g;, the choice
probability of charging for period ¢, equal to the observed share of driving in electric mode,

which is the utility factor per period ¢:

Ry

g _1 SiE 0;
—1 92iErYir
Zr:l eir

SiEt =

Aggregation allows the model to capture the share of electric driving, which reflects non-
binary behaviors such as partial charging. We solve for ¢; = In <%>, and use the value
in the linear regression:

0it = a1 Apy + An; + A, (7)

To compute Ap;;, we use information on the fuel price per liter, the fuel economy in internal
combustion mode, the electricity price, and the fuel economy in electric mode, and calculate
the price of fueling and electric charging per kilometer. As for electricity prices, we use €0.30
and €0.35 per kWh. We assume that A¢;; is mean-zero and account for possible correlation
with reported prices using national average prices as instruments.

Figure 2 reports the distribution of the driver-specific fixed effects An;, representing
the drivers’ fixed preference for gasoline over electric mode after netting out price effects.
The distribution is right-skewed with a mass above zero (n;,¢ > 1;g), revealing substantial
heterogeneity in charging preferences across drivers. This heterogeneity explains the inelastic
response of the utility factor to fuel prices: for drivers with large An;, even significant price
swings are offset by charging inconvenience. These results suggest that policies targeting
charging convenience, along with fuel prices, are crucial to shifting behavior among charging-

reluctant drivers, as also shown in Gessner et al. (2024).
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Figure 2: Distribution of the (dis)utility of charging versus refueling
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Driver fixed effects

The figure plots the distribution of driver-specific fixed effects representing the driver (dis)utility of charging
relative to refueling. The coefficients are obtained after regressing d;;, specified in Equation (7), on the price
differences Ap;; and fixed effects at the driver level.

7 Conclusion

Plug-in hybrids combine an internal combustion engine with an electric battery. These
cars can deliver critical environmental benefits by acting as bridge technology toward fully
electrified private transport, but only if used to maximize electric driving. In this paper,
we investigate the usage behavior of plug-in hybrid cars and the extent to which fuel prices
influence such usage.

Using detailed micro-level data, we document that plug-in hybrids are only occasionally
used in electric mode, with only 32 percent of their mileage driven on an electric motor on
average. This is a problem because the assumed utility factor used to determine the official
fuel economy rating suggests that plug-in hybrids are clean vehicles and allow car manu-

facturers to comply more easily with fuel economy standards. In reality, the environmental
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benefits of plug-in hybrids are overstated if they are not used in electric mode as much as
expected.

We study the extent to which the usage of plug-in hybrids responds to fuel prices. Unlike
combustion engine car drivers, who can only reduce their mileage to absorb fuel price shocks,
drivers of plug-in vehicles can also change their charging behavior and increase the share of
mileage driven in electric mode. We find that a ten percent increase in fuel prices leads to
an increase in the utility factor of around 1.5 percentage points. We find no evidence of
habit modifications in charging behavior. Finally, we estimate substantial heterogeneity in
charging preferences across drivers.

Our results suggest that fuel prices are effective at promoting the use of plug-in hybrids
in electric mode, ultimately contributing to the goal of reducing greenhouse gas emissions

and mitigating climate change.
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Appendix A

Tables
Table A.I: Selected elasticity estimates
. Temporal/cross- Type of price . .

Paper Market /time sectional variation elasticity Elasticity
Panel A: Literature

. Us -0.20
Kilian and Zhou (2023) 1989-2022 Month/state Fuel use (post 2014)
Gelman et al. (2023) Us Week/individual Fuel spendin, -0.16

elman et al. 2013-2016 ee vidua. uel spe g .

. Japan Ce . Fuel use -0.37
Knittel and Tanaka (2021) 2005-2014 Day /individual VMT -0.30
Gillingh d Munk-Nielsen (2019) Denmark Biennial /vehicle VMT 0.30

illingham and Munk-Nielsen 1998-2011 v -0.
Cogli t al. (2017) us Month/stat Fuel 0.37
oglianese et al. 1989-2008 onth/state el use -0.
. 243 US cities .
Levin et al. (2017) 20062009 Day/metropolitan area Fuel use -0.27 to -0.35
Gillingham (2014) California Biennial /vehicl VMT 0.22
illingham 20062009 ennial/vehicle -0.
Panel B: This paper
Fuel use - PHEV -0.41 to -0.33
VMT - PHEV ~ -0.16 t0 -0.09 (n.s.)
Germany R Fuel use - gasoline -0.22
2016-2021 Month/individual VMT - gasoline -0.20
Fuel use - diesel -0.25 to -0.22
VMT - diesel -0.18 to -0.15

The table summarizes the elasticity of fuel prices to fuel demand estimated in prior studies from the last
decade (panel A) and our own estimated elasticities (panel B). For each study, the table lists the relevant
market and time frame, the temporal and cross-sectional variation, the type of elasticity, and the estimated
values. VMT: Vehicle Miles Traveled; PHEV: Plug-in Hybrid Electric Vehicle

43



Table A.Il: Regression of non-chargeable hybrids on-road fuel economy

Dependent Variable: On-road fuel economy
(1)
Constant 1.408*** (0.106)
February -0.122*** (0.026)
March -0.322*** (0.026)
April -0.485*** (0.026)
May -0.644*** (0.026)
June -0.707*** (0.025)
July -0.702*** (0.025)
August -0.677*** (0.024)
September -0.654*** (0.024)
October -0.499*** (0.024)
November -0.237*** (0.024)
December -0.026 (0.025)
Official fuel economy 0.469*** (0.024)
Power (100 kW) 0.331*** (0.031)
Weight (tonne) 1.284*** (0.092)
Build year: 2017 -0.172*** (0.019)
Build year: 2018 -0.170*** (0.020)
Build year: 2019 -0.354*** (0.018)
Build year: 2020 -0.350*** (0.019)
Build year: 2021 -1.541*** (0.188)
Body: light -0.012 (0.014)
Body: medium 0.242*** (0.017)
Class: small 0.066*** (0.021)
RMSE 0.645
R?2 0.475
Adjusted R2 0.475
Observations 18,432

The table reports OLS estimates from a regression of on-road fuel economy for non-chargeable hybrids on the
following covariates: (i) the month of refueling activity (to account for weather conditions), (ii) the vehicle’s
official fuel economy, (iii) vehicle class, (iv) body type, (v) power (kW), (vi) curb weight, and (vii) build
year. *¥** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.IIl: Determinants of utility factor

Dependent variable: Utility factor (HEV)

) (2)

Trip length exceed range  -0.317* 0.050
(0.134) (0.081)

Charging points density 4.828* 3.731%**
(1.948) (1.178)

Heavily driven car -0.059**
(0.022)
Observations 25,426 24,713

Fixed effects

Year Yes Yes
Month Yes Yes
Driver Yes

The table reports the parameter estimates of a fractional response model and robust standard errors (in
parentheses). The dependent variable in each specification is the utility factor, the share of driving in
electric mode. Column 1 includes year and month fixed effects. Column 2 includes driver, year, and month
fixed effects. *** ** and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A.IV: Switching between fuel grades

Dependent variables: Share Normal Super Super Plus  Premium  Diesel Normal Diesel Premium
(1) (2 3) (4) (5) (6)
In(Price Normal) -1.450***  1.029*** -0.156 0.577***
(0.160) (0.197) (0.109) (0.121)
In(Price Super) 0.778***  -0.456*** 0.089 -0.411%**
(0.133) (0.166) (0.095) (0.103)
In(Price Super Plus) 0.240*** -0.067 -0.024 -0.149***
(0.041)  (0.052) (0.031) (0.032)
In(Price Premium) 0.702***  -0.595%** 0.051 -0.158*
(0.120) (0.148) (0.086) (0.089)
In(Price Diesel Normal) -0.009 0.009
(0.055) (0.055)
In(Price Diesel Premium) 0.113 -0.113
(0.074) (0.074)
R? 0.828 0.810 0.783 0.788 0.782 0.782
Observations 332,211 332,211 332,211 332,211 143,752 143,752

Fixed effects

Driver Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes
uarter es es es es es es

Q Y Yo Y Yo Y Ye

The table reports the parameter estimates of an OLS model showing switching across fuel grades. The
dependent variables are the share of each fuel grade Normal, Super, Super Plus, Premium, Diesel Normal,
and Diesel Premium over the total fuel pumped in a quarter, as shown in columns 1-6. All specifications
include driver, year, and quarter fixed effects. Standard errors are clustered at the driver level and reported in
parentheses. *** ** and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.V: First stage results for IV estimates

Dependent variable

In(Price paid)

PHEV Gasoline Diesel

V1 v2 V1 V2 Vi1 1v2

1) (2) (3) (4) (5) (6)
In(Posted Price) 0.846***  0.927*** 0.861*** 0.909*** 0.899%** 0.952%**

(0.013) (0.010) (0.002) (0.010) (0.003) (0.005)

R2 0.844 0.850 0.879 0.876 0.868 0.867
F-test 476.036 496.263 14,164.560  13,784.497 5,756.691  5,698.389
Observations 25,426 25,426 784,212 784,196 357,731 357,722
Fixed effects
Driver Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes

The table reports the first stage

results for the IV estimates, including the F-statistics of the excluded

instruments. All specifications include driver, year, and month fixed effects. Standard errors are clustered
at the driver level and reported in parentheses. *** ** and * correspond to statistical significance at the
1%, 5%, and 10% levels, respectively.
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Table A.VI: Robustness check — alternative deviation ranges

WLS V1 vV 2
UF(1.3) UF(1.5) UF(1.7) UF(1.3) UF(1.5) UF(1.7) UF(1.3) UF(1.5) UF(1.7)
1) (2) (3) (4) (5) (6) (7) (8) 9)

PHEVs
In(Price) 0.042* 0.046** 0.045**  0.137***  0.141***  0.135***  0.140***  0.143***  0.137***

(0.023) (0.022) (0.021) (0.030) (0.029) (0.027) (0.028) (0.027) (0.025)
R2 0.686 0.714 0.723 0.685 0.713 0.723 0.685 0.713 0.723
Observations 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426
Fixed effects
Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVS) using a
range of deviation values for the calculation of the utility factor. The dependent variable is the utility factor
(UF; the share of driving in electric mode) calculated according to Equation (1) using the deviation value
of 1.3 (in columns 1, 4, and 7), 1.5 (in columns 2, 5, and 8), and 1.7 (in columns 3, 6, and 9). Columns 1, 2,
and 3 present the WLS parameter estimates. Columns 4 to 9 are estimated using the instrumental variable
approach. All specifications include driver, year, and month fixed effects. Standard errors are clustered at

the driver level and reported in parentheses. , and * correspond to statistical significance at the 1%,

5%, and 10% levels, respectively.

kskk o kk
’
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Table A.VII: Robustness check — incl. long-distances

WLS V1 v 2

In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE)
(1 2) ®3) (4) (%) (6) (7) (8 )

PHEVs

In(Price) -0.061 -0.045 -0.016 -0.359** -0.122 -0.237*** -0.235* -0.020 -0.215%**
(0.104) (0.097) (0.038) (0.145) (0.139) (0.051) (0.139) (0.131) (0.049)

R2 0.346 0.257 0.697 0.346 0.257 0.696 0.346 0.257 0.696

Observations 26,231 26,231 26,231 26,231 26,231 26,231 26,231 26,231 26,231

Fixed effects

Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVs) includ-
ing observations with long-distance traveled, with a maximum daily mileage of 105.4 km. The dependent
variables are: (i) the log of fuel consumption (in liters) in columns 1, 4, and 7; (ii) the log of vehicle kilometers
traveled (VKT) in columns 2, 5, and 8; and (iii) the log of fuel economy (FE, in liters/100km) in columns 3,
6, and 9. Columns 1, 2, and 3 present the WLS parameter estimates. Columns 4 to 9 are estimated using the
instrumental variable approach. PHEVs: plug-in hybrid electric vehicles. All specifications include driver,
year, and month fixed effects. Standard errors are clustered at the driver level and reported in parentheses.
*xx k% and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.VIII: Robustness check — incl. long-distances (Utility Factor)

WLS vV 1 IV 2
UF(HEV)
(1) (2) (3)
PHEVs
In(Price) 0.013  0.142***  0.130***
(0.022)  (0.030) (0.029)
R2 0.653 0.652 0.652

Observations 26,231 26,231 26,231

Fixed effects

Driver Yes Yes Yes
Year Yes Yes Yes
Month Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVSs) including
observations with long-distance traveled, with a maximum daily mileage of 111.4 km. The dependent variable
is the utility factor UF (the share of driving in electric mode) calculated according to Equation (1) using
the empirical estimation of Fuel economy ¢ based on non-rechargeable HEVs (UF HEV). All specifications
include driver, year, and month fixed effects. Standard errors are clustered at the driver level and reported in

parentheses. *** ** and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.IX: Robustness check — unweighted regressions

OLS Vi1 vV 2

In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE)

1 (2) (3) 4 (5) (6) (7) (8) 9)

PHEVs
In(Price) -0.260*** -0.141* -0.118*** -0.359*** -0.095 -0.265*** -0.315*** -0.035 -0.280***

(0.086) (0.080) (0.034) (0.123) (0.116) (0.048) (0.120) (0.112) (0.047)
R2 0.309 0.209 0.711 0.309 0.209 0.711 0.309 0.209 0.710
Observations 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426
Fixed effects
Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVs) using
IV regressions without weights. The dependent variables are: (i) the log of fuel consumption (in liters) in
columns 1, 4, and 7; (ii) the log of vehicle kilometers traveled (VKT) in columns 2, 5, and 8; and (iii) the
log of fuel economy (FE, in liters/100km) in columns 3, 6, and 9. Columns 4 to 9 are estimated using the
instrumental variable approach. All specifications include driver, year, and month fixed effects. Standard
errors are clustered at the driver level and reported in parentheses. *** ** and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A.X: Robustness check — unweighted regressions (Utility Factor)

OLS IV1 IV 2
UF(HEV)
(1) (2) (3)
PHEVs
In(Price) 0.065***  0.146***  0.155***
(0.019) (0.027) (0.026)
R?2 0.681 0.680 0.680

Observations 25,426 25,426 25,426

Fixed effects

Driver Yes Yes Yes
Year Yes Yes Yes
Month Yes Yes Yes

The table reports the estimation results of Equation (3) for plug-in hybrid electric vehicles (PHEVs) using IV
regressions without weights. The dependent variable is the utility factor UF (the share of driving in electric
mode) calculated according to Equation (1) using the empirical estimation of Fuel economy, g based on
non-rechargeable HEVs (UF HEV). All specifications include driver, year, and month fixed effects. Standard
errors are clustered at the driver level and reported in parentheses. *** ** and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A.XI: Robustness check — linear trend

WLS Ivi v 2

In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE)

1) (2) (3) (4) (5) (6) (7) (8) 9)
PHEV
In(Price) -0.184* -0.103 -0.081** -0.322%* -0.050 -0.272%** -0.242* 0.028 -0.270***
(0.100) (0.095) (0.039) (0.140) (0.137) (0.054) (0.134) (0.129) (0.050)
R? 0.311 0.210 0.677 0.311 0.210 0.676 0.311 0.210 0.676
Observations 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426
Gasoline
In(Price) -0.028 -0.022 -0.006** -0.150*** -0.131***  -0.019*** -0.146*** -0.125%**  -0.021***
(0.018) (0.018) (0.002) (0.024) (0.024) (0.003) (0.023) (0.023) (0.003)
R2 0.240 0.208 0.898 0.240 0.208 0.898 0.240 0.208 0.898
Observations 784,212 784,212 784,212 784,212 784,212 784,212 784,196 784,196 784,196
Diesel
In(Price) -0.072*** -0.098***  0.026*** -0.136*** -0.169*** 0.033*** -0.158%** -0.193*** 0.035%**
(0.022) (0.022) (0.003) (0.027) (0.028) (0.003) (0.027) (0.027) (0.003)
R? 0.239 0.227 0.871 0.239 0.227 0.871 0.239 0.227 0.871
Observations 357,731 357,731 357,731 357,731 357,731 357,731 357,722 357,722 357,722
Fixed effects
Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

All specifications include driver and year fixed effects. Standard errors are clustered at the driver level and
reported in parentheses. *** ** and * correspond to statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table A.XII: Robustness check — linear trend (Utility Factor)

WLS IV 1 IV 2
(1) (2) (3)
PHEV
In(Price) 0.047**  0.150%**  0.150%**
(0.023)  (0.030) (0.028)
R? 0.657 0.657 0.657

Observations 25,426 25,426 25,426

Fixed effects
Driver Yes Yes Yes
Year Yes Yes Yes

All specifications include driver and year fixed effects. Standard errors are clustered at the driver level and
reported in parentheses. ***, ** and * correspond to statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table A.XIII: Robustness check — COVID-19

WLS V1 IV 2

In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE) In(Fuel Use) In(VKT) In(FE)

(1 2) 3) (4) (5) (6) (™ (8) )
PHEV
In(Price) -0.330** -0.338** 0.008 -0.941%** -0.717** -0.224 -0.775** -0.541 -0.234*
(0.154) (0.135) (0.064) (0.344) (0.333) (0.136) (0.358) (0.332) (0.135)
Post -0.037 -0.097**  0.059*** -0.189* -0.195* 0.006 -0.154 -0.153 0.000
(0.052) (0.047) (0.021) (0.104) (0.100) (0.042) (0.111) (0.104) (0.043)
In(Price) x Post 0.184 0.141 0.042 0.579 0.422 0.157 0.523 0.328 0.195
(0.179) (0.161) (0.067) (0.415) (0.395) (0.159) (0.446) (0.418) (0.164)
R? 0.319 0.213 0.703 0.318 0.213 0.702 0.319 0.213 0.702
Observations 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426 25,426
Fixed effects
Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (4) for plug-in hybrid electric vehicles (PHEVs). “Post”
indicates the period after March 2020. The dependent variables are: (i) the log of fuel consumption (in
liters) in columns 1, 4, and 7; (ii) the log of vehicle kilometers traveled (VKT) in columuns 2, 6, and 8; and
(iii) the log of fuel economy (FE, in liters/100km) in columns 3, 6, and 9. All specifications include driver,
year, and month fixed effects. Standard errors are clustered at the driver level and reported in parentheses.
*xk k% and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A.XIV: Robustness check — COVID-19 (Utility Factor)

WLS Vi1 IV 2
(1) (2) 3)
PHEV
In(Price) 0.004 0.147**  0.156**
(0.038)  (0.073)  (0.078)
Post -0.032** 0.001 0.005

(0.013)  (0.023)  (0.025)
In(Price) x Post -0.027 -0.098 -0.122
(0.041)  (0.088)  (0.095)

R2 0.664 0.664 0.664
Observations 25,426 25,426 25,426

Fixed effects

Driver Yes Yes Yes
Year Yes Yes Yes
Month Yes Yes Yes

All specifications include driver, year, and month fixed effects. Standard errors are clustered at the driver
level and reported in parentheses. *** ** and * correspond to statistical significance at the 1%, 5%, and
10% levels, respectively.
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Figures

Figure A.1: Sample screenshot of the application Spritmonitor
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This picture illustrates how the application users record their travel logs in the application Spritmonitor.
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Figure A.2: Number of models and drivers by year of manufacture
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The figure shows: in Panel (a) the number of vehicle models by year of manufacture, and in Panel (b) the
number of drivers by year of manufacture in our sample.

Figure A.3: Number of refuelings per number of drivers by month
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The figure shows the average number of refuelings per driver by month for each fuel type in our sample.
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Figure A.4: Household electricity prices
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The figure plots household electricity prices, including taxes, levies, and VAT, adjusted by the consumer
price index (CPI) with 2015 as the base year. The unit is € per kWh. Source: Statistisches Bundesamt.

Figure A.5: Average public charging prices in Germany (2017-2021).
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The figure shows the average price of charging an electric vehicle (EV) at public charging stations in Germany,
broken down by major operator, for each year. The unit is € per kWh. Source: LichtBlick
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Figure A.6: Utility factor over time
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The figure shows the monthly average utility factor (UF) for plug-in hybrid electric vehicles (PHEVs) in
our sample. The solid line (HEV) is calculated using the regression-based, month-specific correction factors
derived from non-chargeable hybrids (HEVSs) as described in Section 3. The other lines are calculated using
fixed correction factors (1.3, 1.5, and 1.7).
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Figure A.7: Cost differences refueling versus recharging

0.8 '
— Baseline 0.104
- - Adjusted
0.6 0.084
2 20,064
204 2
[ [
[a} [a}
0.041
0.2
0.021
0.0 0.001
-1 0 1 2 3 4 5 6 7 8 -20 -10 0 10 20 30 40 50 60 70
Fuel cost - Electricity cost (Fuel cost — Electricity cost) / Fuel cost x 100
(a) Cost differences (b) Cost difference as % of fuel cost

The figure shows the kernel density of the cost difference between fuel and electricity for each PHEV in our
sample, expressed in €/100km in Panel (a), and the kernel density of the cost difference as a percentage
of the total fuel cost in Panel (b). In the baseline calculation, we assume a fuel price of €1.37 per liter
(the average in 2021) and an electricity price of €0.30 per kWh. In the adjusted calculation, we account
for average deviations from official fuel economy values, applying adjustment factors of 1.38 to gasoline
consumption and 1.27 to electricity consumption.

Figure A.8: Reported and posted fuel prices
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The figure plots: in Panel (a) the national average prices of normal gasoline in Germany (dotted line) and
average actual price paid as reported by the application user (solid line); in Panel (b) the national average
prices of diesel in Germany (dotted line) and average actual price paid as reported by the application user
(solid line). The unit is € per liter.
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Appendix B

B.1 Data processing process

To prepare the vehicle logbook data for analysis, we follow the cleaning procedure in Plotz
et al. (2020), excluding users with (i) fewer than seven distinct days of travel logs and (ii)
less than 1,500 km of total mileage or 50 liters of total fuel consumption. In addition, we
introduce a stricter filter by requiring at least 365 days between a user’s first and last log
entry, ensuring sufficiently long and consistent reporting. Table B.I summarizes the number
of refuelings per driver after cleaning, by vehicle type (Gasoline, Diesel, PHEV) and refueling
type (Total, Full, Partial). Gasoline vehicles provide the largest sample (33,027 drivers) with
the highest mean number of total refuelings (31.97), while PHEVs yield the smallest sample
(1,494 drivers) with a mean of 21.68. Across all vehicle types, full refuelings are more frequent
than partial ones.

Figure B.1 shows the distribution of driver-level panel lengths in the cleaned sample.
Most drivers are observed for relatively short periods, with the modal panel length around
12-18 months. The long right tails indicate that a smaller share of drivers contribute multi-
year records. The pattern is consistent across vehicle types.

To accurately calculate real-world fuel economy from this loghook data, we apply the
full-to-full method, also known as the tank-to-tank method, or full tank method. In this
method, fuel economy is computed over fill-up intervals, which are defined as the period
between two consecutive full-tank refueling events. Since partial refuelings do not allow
for an exact calculation of fuel economy relative to distance traveled, the quantities of fuel
added and odometer readings recorded during any partial refuelings are accumulated and
assigned to the subsequent full-tank event. The total fuel quantity consumed within a fill-up

interval is the sum of all fuel quantities purchased since the previous full refueling, while
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the distance traveled is determined by the difference in odometer readings between the two
full-tank events. Fuel economy is then calculated as the total fuel quantity consumed per
100 kilometers driven within each fill-up interval.

After constructing the fill-up intervals, we apply an outlier removal procedure separately
for each engine type (gasoline, diesel, and plug-in hybrid electric vehicles). Specifically,
we use the Interquartile Range (IQR) method to exclude outliers based on the following
variables: kilometers traveled, price per liter, fuel economy, duration of the fill-up interval,
and total fuel quantity consumed. Additionally, we exclude records corresponding to the top
30 percent of the distribution of daily distance traveled to remove unusually long-distance
trips. For plug-in hybrids, this cutoff corresponds to 90 km per day. Overall, this procedure
eliminates approximately 6 percent of observations from the final sample.

For each fill-up interval, total fuel expenditure is calculated in two ways: (i) as the sum
of fuel quantities purchased multiplied by the actual price per liter paid by the driver at each
refueling event, and (ii) as the hypothetical total expenditure the driver would have incurred
if all fuel had been purchased at the national average price prevailing on each refueling date.
The second measure is used to construct the instrumental variable for the actual price paid.

From the fill-up interval data, we then calculate daily averages of fuel quantity purchased,
total fuel cost (actual and hypothetical), distance traveled, and fuel quantity consumed. Fi-
nally, these daily values are aggregated to the monthly level. At this monthly frequency, we
derive the variables used in the analysis: total fuel quantity consumed (in liters), total kilome-
ters traveled, fuel economy (in liters per 100 kilometers), and both actual and instrumented

fuel prices (calculated as total expenditure divided by total fuel quantity purchased).
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Table B.I: Number of refuelings per driver before aggregation

Total Full Partial
Type N  Mean SD  Mean SD  Mean SD
PHEV 1,494 21.68 19.10 2149 18.95 0.19 0.68

Gasoline 33,027 31.97 21.87 31.55 21.63 042 1.24
Diesel 14,922 37.20 26.66 36.73 26.36 047 141

Total 49,443 33.24 23.56  32.81 23.30 0.43 1.28

The table reports the number of refuelings per driver after data cleaning, disaggregated by vehicle type
(PHEV, gasoline, and diesel cars) and by refueling type (full and partial). Reported values are means and
standard deviations (SD). Sample sizes correspond to the number of drivers (N).

Figure B.1: Distribution of driver-level panel lengths
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The figure plots histograms showing the distribution of the panel lengths of drivers in our sample. The panel
length is defined as the time period between the first and last month of data for each driver in our sample.
The four panels correspond to: upper left — total (gasoline, diesel, and PHEV); upper right - PHEV; bottom
left — gasoline; bottom right — diesel.
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