Credit Conditions when Lenders are Commonly Owned

Mattia Colombo, Laura Grigolon and Emanuele Tarantino*

March 27, 2024

Abstract

We investigate how common ownership between lenders affects the terms of syndicated loans. We provide a novel view on the role of common ownership in mitigating information asymmetries on the quality of borrowers and the contractual distortions of lending conditions. We empirically show that high levels of common ownership lower the rates and the shares of the loans retained by the lead bank, and mitigate rationing at issuance. We use a novel exclusion restriction based on deposit multimarket contact to identify the effect of common ownership on loan pricing after accounting for its impact on lenders' participation in the syndicate.

Keywords: common ownership; syndicated loans; information asymmetries

^{*}Colombo: Erasmus School of Economics (colombo@ese.eur.nl). Grigolon: University of Mannheim and CEPR (laura.grigolon@uni-mannheim.de). Tarantino: LUISS University, EIEF and CEPR (etaranti@gmail.com). We are grateful to Jongha Lim, Bernadette Minton, and Michael Weisbach for generously sharing their data on lender classification with us, Matt Backus, Christopher Conlon, and Michael Sinkinson for assembling and providing their dataset of 13F holdings, Miriam Schwartz-Ziv and Ekaterina Volkova for making the data on block ownership (13D and 13G filings) publicly available, and Kristian Blickle, Quirin Fleckenstein, Sebastian Hillenbrand, and Anthony Saunders for their guide and code to compute Dealscan shares. We thank Vesna Oshafi for excellent research assistance. Mattia Colombo gratefully acknowledges financial support from Stiftung Geld & Währung. Laura Grigolon gratefully acknowledges financial support from the German Research Foundation (DFG) through CRC TR224 (Project A02).

1 Introduction

Over the last two decades, the banking sector has become increasingly interconnected due to the steady growth of shareholders owning equity in multiple banks: the literature refers to those shareholders as "common owners". In 2013, the four largest U.S. asset managers (Blackrock, Vanguard, State Street, and Fidelity) held a combined 20% of the shares of the four largest commercial banks (JP Morgan, Citigroup, Bank of America, and Wells Fargo).

Common ownership affects credit conditions and credit availability in a complex way. Recent empirical work mainly focuses on a potential downside of common ownership: an investor holding a controlling stake in several firms belonging to the same industry might influence their pricing to soften competition (Azar et al., 2022, 2018; He and Huang, 2017). In this paper, we focus on a new potential upside of common ownership: reducing information asymmetries in syndicate relationships. We refer to the asymmetric information between lenders that characterizes the syndicated loan industry, where lead banks possess an informational advantage on the borrower's risk profile relative to other participants and are tasked with loan monitoring. We conjecture that a lender with superior information, such as the lead bank in a syndicated loan, can truthfully transmit such information to another lender when the two are interconnected via a common shareholder. As common ownership eases information asymmetries, the lead bank does not need to signal the quality of the borrower to potential investors. Thus, common ownership may have positive effects on risk-pricing and credit availability for borrowers.

Regulators explicitly acknowledge that common ownership between the lead bank and potential syndicate members can be conducive to the exchange of information between investors in syndicated loans (European Commission, 2019). This practice is not regarded as anticompetitive per se; however, lenders should not collude or otherwise harm the borrowers. The syndicated market has been subject to repeated investigations by the U.S., E.U., British, Dutch, and Spanish authorities to evaluate possibly harmful exchanges of information. High levels of common ownership would facilitate those exchanges: this direct effect of common ownership is supported by anecdotal evidence, with Shekita (2021) compiling 30 case studies of interventions by common owners on corporate governance.

To investigate how common ownership between lenders affects credit conditions and credit availability, we proceed in two steps. First, we develop a model to derive empirical predictions on the effects of common ownership in reducing information asymmetries, which, in turn, affect loan prices, the ownership structure within the loan, and the overall

volume of lending. The lead bank represents a penniless borrower: the borrower and the lead bank privately observe the type of borrower, which can be either good or bad. As the assets of the lead bank are insufficient to fund the borrower's project, the lead bank needs to form a syndicate. We distinguish between two scenarios: high and low common ownership. Only when common ownership is high can information on the borrower type be truthfully transmitted by the lead bank to the syndicate members. When common ownership is low, asymmetric information implies that, in equilibrium, the lead bank will have to promise higher returns to the syndicate members and commit its funds to the loan. By doing so, the lead bank signals the quality of the borrower to other potential lenders. As only some lead banks possess sufficiently large funds to signal the quality of the loan in the capital market, low common ownership will determine rationing at issuance. If, instead, common ownership is high, lending can take place at the conditions that would prevail with symmetric information. In sum, at high levels of common ownership: (i) the interest rate paid to the syndicate members is lower; (ii) the lead bank retains a lower amount of funds; and (iii) we observe less rationing at the issuance.

In our model, lead arrangers take externalities into account and align their interests with the other lenders (as in Antón et al. 2023). We obtain predictions (ii) and (iii) (relating common ownership to lower retained funds and less rationing) only if, on top of aligning parties' interests, common ownership also facilitates the transmission of information from the lead arrangers to the syndicate members. We empirically document a positive relationship between common ownership and the degree of overlap between directors and senior executives between lenders. The vast majority of loan officers are directors and senior executives (Gao et al., 2020). This positive correlation supports the plausibility of information transmission between lenders, for example, through common executives or directors, when common ownership is sufficiently high.

In the second step, we empirically test these novel predictions using data on loans syndicated in the U.S. between 1990 and 2017. The syndicated lending market provides an ideal setting to test the three predictions of our theoretical framework. Although multiple banks can participate in a loan, only the lead bank conducts due diligence of the client: this creates a problem of information asymmetry between the lead bank and syndicate participants (Sufi, 2007; Ivashina, 2009). A syndicated loan typically consists of several tranches (facilities). After receiving the mandate, the lead bank announces to

¹The source of asymmetric information can be the probability of successful project completion, as we currently assume in the model, or the cost of monitoring the firm, as in Sufi (2007). The predictions of the model remain unchanged.

the market the non-price characteristics of the loan and its facilities, such as collateral and maturities. The price of each facility and the composition of the syndicate are set on the market, resulting in variations in the price and composition of the syndicates across facilities of the same loan. In contrast, default risk and creditor rights are essentially constant across facilities of the same loan: lenders can force the borrower into bankruptcy if credit events occur, such as payment defaults or covenant violations.² Hence, in our most demanding specifications, we can credibly identify differences in lending conditions between facilities within a loan with varying degrees of common ownership while keeping the default risk constant.

We find support for all three predictions in the data. High levels of common ownership between the lead bank and the syndicate participants are associated with lower prices. In panel regressions, we identify the impact of common ownership on prices by leveraging variation in common ownership across facilities and loans. We obtain these results in specifications that account for other factors potentially affecting the loan spread, including an extensive set of controls and fixed effects related to: the loan and the facility; the borrower; and the lead bank. Coefficient estimates indicate that an increase of one standard deviation in common ownership is associated with a lower spread of 5.3 basis points, where the average spread is around 171 basis points. We discretize our common ownership measure into five indicator variables corresponding to the quintiles of its support. Our estimates show that reductions in spread are relevant only for high levels of common ownership (quintiles 3 to 5) and that those reductions are monotonically increasing in common ownership. Within a quintile, a change in common ownership from the minimum to the maximum level reduces the price by roughly 7 to 15 basis points, where the average spread is around 190 basis points for the upper quintiles.

Based on conversations with industry experts, we learned that, in the presence of ownership overlap, a lead bank might selectively transmit pre-bid information to investors to convince them to subscribe to the loan at the margin. This explains the relatively small size of our estimates when considering the average impact of common ownership. When considering intra-quintile effects or the large variation in common ownership determined by a merger between asset managers (see below), the impact on loan prices is larger. Our identification approach does not rule out possible competitive effects of common ownership, as highlighted by the literature. Instead, our estimates reflect the aggregation of positive (mitigation of asymmetries) and negative (softening competition) externalities;

²Covenant-lite loans presenting a split structure are an exception, with different financial covenants between tranches; we remove them from the sample.

in our setting, the first effect prevails, resulting in lower spreads.

In what follows, we describe three additional identification strategies verifying that our findings do not reflect the impact of unobservables on loan pricing correlated with the presence of commonly owned lenders. First, we disentangle the role of common ownership on syndicate participation from loan pricing. We explicitly model that lenders' decisions to enter the deal may depend, among other factors, on the level of common ownership with the lead arranger and other unobservables collected in the error term. We employ a novel exclusion restriction in the selection equation defined as a measure of multimarket contact in bank deposits between the lead bank and the potential members (Hatfield and Wallen, 2022), along with the geographic distance between lenders. As expected, high common ownership with the lead arranger encourages lenders' participation, along with their degree of multimarket contact and geographical vicinity. Importantly, after accounting for selection, our findings on loan pricing remain consistent. We conclude that common ownership reduces the spread both through the book-building process and, more directly, by mitigating information asymmetries between lenders.

Second, we estimate the effect of common ownership on the pricing of facilities of the same type within a given loan. This identification strategy, used by Ivashina and Sun (2011) and Lim et al. (2014), rules out the possibility that the variation in spread associated with common ownership reflects omitted characteristics related, for example, to borrower risk that systematically correlates both with price and common ownership. The within-loan estimates confirm the negative impact on prices: an increase of one standard deviation in common ownership implies a 8.5 basis points reduction in the spread.

Third, we exploit the variation in common ownership determined by an exogenous shock: the merger between two large asset managers. Following Azar et al. (2018), this identification strategy uses the variation in common ownership across loans implied by the hypothetical combination of the two parties' portfolios as of the quarter before the announcement of the merger. We use a difference-in-difference design to demonstrate the negative relationship between common ownership and spreads. All our tests lend credibility to two primary assumptions required by the difference-in-difference design (no anticipation and parallel trends). We also show that our setting is robust to the points raised by the literature when using mergers as an exogenous shock (Lewellen and Lowry, 2021). We find that treated loans are funded by lenders who experience a significant increase in common ownership following the acquisition is about 11 percent for the treated loans.

Our coefficient estimates imply a reduction in the spread of treated facilities by around 40 basis points.

We now present the results related to the other two testable implications of the model. According to the second prediction, the lead bank retains lower funds with high common ownership. We find that an increase of one standard deviation in common ownership is associated with a statistically significant 0.38 percentage point decrease in the amount of the loan retained by the lead bank; the lead arranger retains, on average, 14% of the loan amount. In analyzing the share of loan retained by the lead arranger, we implement Blickle et al. (2020)'s approximation method to compute estimates of the post-origination loan shares held by the lead arranger, accounting for the presence of originate-to-distribute loans and sample selection in reported shares.

Finally, we find that common ownership impacts credit supply. We empirically compare the intensity of lending relationships between two types of lead arrangers: arrangers that experience a prevalence of loans with high common ownership in their portfolio in a given quarter, and arrangers that do not. These two groups present similar observable characteristics; the difference in their level of common ownership in a quarter is driven by quasi-random circumstances tied to the differences in fund inflows of potential investors, which in turn determines a slightly different composition in the syndicate and, as a consequence, the level of common ownership in their portfolio. We find that lead arrangers with a prevalence of high common ownership have stronger lending relationships: they underwrite 13% more loans in a quarter with respect to lead arrangers with a low prevalence and 44% more in terms of the amount.

We are careful to rule out alternative explanations to our findings. In all our specification, we control for vertical relations, specifically common ownership between lenders and borrowers. We also account for other tools employed to overcome moral hazard and adverse selection in the syndicated loan market. Specifically, we consider the relationships between syndicate members by looking at the lead lender's past relationships with the syndicate members, as well as the "reciprocity" in lender participation, whereby the lead and the member banks in one loan switch their roles as lead and participants in another syndicated loan. Reputation effects are captured by lead bank fixed effects. Our results show that common ownership complements other mechanisms mitigating information asymmetries.

Finally, we provide two additional pieces of evidence consistent with common ownership as a mechanism of information transmission. First, we empirically show that common ownership has an impact only in the case of new borrowers, as the lead arranger is more likely to hold an informational advantage over the syndicate members. Second, we propose a falsification test of our theory. We conjecture that information flows from the lead bank to the syndicate members; thus, only common ownership between lead bank and syndicate members should have an impact on our outcome variables, not common ownership between syndicate members and lead bank. Our results confirm this intuition, thus providing an indirect confirmation that information transmission is effectively initiated by the lead bank.

These results offer practical guidance to policymakers. We provide novel empirical evidence consistent with a flow of information between the lead bank and the commonly owned syndicate member banks. As a result, the distortions caused by information asymmetry on the terms of credit contracts are mitigated through common ownership. We acknowledge that, on top of the beneficial effects on the conditions of credit documented in our analysis, common ownership may be detrimental for the borrower by, for example, preempting the entry of lenders outside the group of commonly owned banks. The study of these (potentially anticompetitive) effects will be of relevance for future research.

Related literature Common ownership has recently attracted significant attention from financial and industrial economists. The literature mainly focuses on the common ownership hypothesis, according to which an investor holding a controlling stake in several firms belonging to the same industry might influence their pricing with the purpose of softening competition (Azar et al., 2022, 2018; He and Huang, 2017).³ We advance to this literature by proposing a new theoretical mechanism - so far overlooked in the literature - in which common ownership reduces information asymmetries and distortions in credit conditions.

Recent literature shows how group affiliation affects borrower-lender relationships. Saidi and Streitz (2021) look at the link between credit concentration and industry markups, where common lenders induce less aggressive behavior among their borrowers. Massa and Rehman (2008) study the relationship between mutual funds and banks in the same financial group, providing evidence of direct information flows within the financial conglomerates through informal channels, such as personal acquaintances. Jiang

³Boller and Scott Morton (2020) use the inclusion in a stock market index to identify the impact of an increase in the overlap among investors. Newham et al. (2022), Ruiz-Pérez (2019) and Xie (2021) analyze the effect of common ownership on entry. Antón et al. (2023) investigate how managerial incentives can link common ownership and competition. Aslan (2019) looks at the relationship between common ownership and costs. Backus et al. (2021a) use a test of conduct to reject that common ownership has a large effect on markups. Comprehensive reviews of this growing literature by Schmalz (2021) and Backus et al. (2020) provide a summary of the empirical evidence.

et al. (2010) investigate the simultaneous holding of both equity and debt claims of the same company by non-commercial banking institutions in syndicated loans; they show that syndicated loans with dual holders have lower spreads than those without. Closer to our study, Cici et al. (2015), Ojeda (2019), and Wang and Wang (2019) study the impact of common ownership between lenders and borrowers. Overall, they document lower loan spreads, larger loans, and more frequent lending activity in the presence of common ownership. In contrast to all these papers, we are the first to look at common ownership between lenders and its effect on credit terms. We find empirical evidence consistent with the results of a model in which, thanks to common ownership, the lead bank does not need to signal to other lenders in the syndicate the quality of the borrower by means of costly signals, such as the retention of a share of the loan. In all our specifications, we nevertheless account for relationships of common ownership between lenders and borrowers.

We also contribute to the literature on syndicated lending. We are the first to show that common ownership reduces the distortions of risk pricing and credit rationing that the previous literature shows to be caused by information asymmetries. Early contributions in this body of work have documented that the lead bank, which conducts the due diligence and acts on behalf of the borrower, mitigates asymmetric information vis á vis syndicate members by retaining a larger share of the loan (Sufi, 2007; Focarelli et al., 2008; Ivashina, 2009). Analogously, as a larger portion of the loan retained by the lead bank signals a commitment by the lead arranger in monitoring and borrower quality, Lin et al. (2012) show that the fraction held by the lead bank increases in the divergence between control rights and cash-flow rights of the borrower's largest shareholder. Finally, Bruche et al. (2020) highlight that the presence of a pipeline risk taken by the lead arranger when originating a loan also plays a role in loan retention. Other aspects of syndicated lending examined in the literature include how the composition of the syndicate affects loan spreads (Lim et al., 2014), the propensity to syndicate a loan (Dennis et al., 2000), the relationship between final spreads and fees (Berg et al., 2016; Cai et al., 2018), and the role of covenants (Drucker and Puri, 2009; Becker and Ivashina, 2016).

2 Institutional Setting

2.1 Syndicated Credit: Asymmetric Information and Loan Structure

Syndicated lending is an important source of financing for U.S. corporations. Sufi (2007) and Ivashina (2009) report that more than 90% of the largest 500 non-financial Compustat firms in 2002 obtained a syndicated loan between 1994 and 2002. In 2006, syndicated loan issuance surpassed corporate bond issuance with a volume of \$1.7 trillion. More recently, the Federal Reserve's Terms of Business Lending survey documented that 44% of all commercial loans in 2013 were syndicated loans.

The syndicated loan market operates over the counter. Transactions are the result of informal interactions between borrowers and lenders. The borrowers are firms that seek funding from the syndicate to leverage large capital investments. The syndicate is headed by the lead bank or arranger. Other syndicate members are banks or institutional investors.

The borrower solicits potential lead banks to submit a bid. These banks propose their syndication and pricing strategy to the borrower. The chosen lead bank then receives the mandate to issue a loan and performs the due diligence. Details of the mandate signed between the lead bank and the borrower remain confidential, including any potential rearrangement of the fees to the lead bank depending on the outcome of the syndication. Syndicated loans are not considered to be a "security" under federal or state laws, as recently confirmed by the Southern District of New York in the case Kirschner v. JPMorgan Chase Bank, and loan syndication is not a "security distribution". As a consequence, the due diligence standards are left to the criteria of the lead arranger, who also disclaims any responsibility for the accuracy of the information included in the memorandum provided to the potential investors (Ivashina, 2005).

Following Sufi (2007), most of the literature considers the presence of private information in the hands of the lead bank as a defining feature of the industry. In addition, lead arrangers are typically tasked with loan monitoring for the duration of the deal. This industry is therefore characterized by the contemporaneous presence of adverse selection and moral hazard. More recent work has documented that the market has seen an increase in the originate-to-distribute loans, especially in the non-investment grade loan segment targeted toward institutional investors: Bord and Santos (2012) and Bruche et al. (2020). If the lead arranger syndicates a loan with the intention of selling it immediately, pipeline

risk, that is the risk that the loan becomes a "hung" deal, may arise when the market is not willing to absorb the loan under the conditions arranged by the lead bank: Bruche et al. (2020). Pipeline risk adds a layer of complexity that intersects with asymmetric information because, for originate-to-distribute loans, loan retention may be the result of pipeline risk. In the empirical section of the paper, we propose a falsification test to show that pipeline risk is unlikely to explain our results (see Section 7.2). We will also take into consideration this feature of the market in our empirical strategy (see Section 5).

The loan issued by the lead bank is divided into tranches, or facilities, of different types (credit line, term loan), amount, and maturities. All non-price terms of the loan, such as type, amount, maturity, purpose, collateral, and covenants, are set before the marketing phase starts. Only type, amount, and maturity vary across facilities within a loan. Covenant-lite loans are an exception as they may present a split structure: term loan facilities lack financial covenants, while credit lines contain traditional financial covenants. Following Berlin et al. (2020), we identify the deals having split control rights and remove them from the sample (see Section 4).

The interest rate paid to syndicate members, calculated as the spread over LIBOR, and the composition of the syndicate are determined during the marketing phase. The lead bank proposes the price for each facility in the loan, and potential syndicate members decide whether they wish to buy at the specified spread. The deal is closed when the desired level of demand is met. The lead bank can subscribe part of the loan to close the deal, although it does not have an obligation to do so. If credit events occur, such as payment defaults or covenant violations, syndicate members can force the borrower into bankruptcy.

Finally, the syndicated lending market is highly concentrated. JP Morgan and the Bank of America arrange around 63% of the loans in the sample. We take care of concentration in our empirical analysis, by running our tests excluding the loans arranged by these two banks.

2.2 Common Ownership in the Syndicated Loan Market

Asset managers, such as Black Rock, Vanguard, State Street, and Fidelity are often shareholders in both the lead bank and the syndicate members, and their holdings have been growing substantially over the recent years, as documented in Table B.I. Recent literature (Appel et al., 2016; Brav et al., 2019) shows that institutional investors use their voting blocs to influence the governance of firms. Asset managers may exert their control

through "voice" (Edmans et al., 2019), using direct interventions, such as monitoring the managers, or suggesting strategic changes. Matvos and Ostrovsky (2008) show that in mergers with negative acquirer announcement returns, mutual funds holding shares in both the acquirer and the target are more likely to vote for the merger. He et al. (2019) provide evidence that institutional investors play a more active monitoring role when common ownership is high. Appel et al. (2016) show that the presence of mutual funds has a direct impact on the composition of the board of directors, and in particular an increase in ownership by passive funds is associated with an increase in non-executive directors entrusted by the shareholders.

In our empirical framework, we study situations in which the lead bank and the members in the syndicate are commonly owned by large institutions, exploiting variations in the level of common ownership across loans and across facilities within a loan. We conjecture that common ownership facilitates the transmission of private information regarding the borrowing firms from the informed lead bank to the uninformed members of the syndicate. Regulators explicitly recognize the possibility of such influence. In a recent report on loan syndication and competition in credit markets, the European Commission acknowledges that information transmission may arise when the lead bank and syndicate members are commonly owned (European Commission, 2019). The syndicated market has been subject to repeated investigations by the U.S., European, British, Dutch, and Spanish authorities to evaluate possibly harmful exchanges of information: see the Jones Day Commentary. In 2006, the Antitrust Division of the U.S. Department of Justice (DOJ) investigated private equity syndicates ("club deals"), an industry that shares parallels with syndicated lending. The DOJ expressed concern that syndicate members may conspire to artificially reduce the acquisition price of the targets of those deals by allocating leveraged buyout opportunities among participants. In Section 4.4, we provide further evidence on the plausibility of information transmission through shared directors and executives between lenders via the common owner. Finally, a notable example of direct intervention by passive funds in the decision-making process of lenders is offered by BlackRock's Investment Stewardship division, which engages with lenders' executives and board directors to address the lenders' business practices. We look at the data on the engagement activities of the division in financial companies; BlackRock regularly engages in activities related to risk management, business oversight, and corporate strategy.

Our conversations with industry experts confirm that the subscription process of syndicated loans involves close cooperation between market participants. On the one hand, in the presence of ownership overlap, a lead bank may selectively exchange pre-bid infor-

mation during the formation of the syndicate in order to induce an investor to subscribe a loan. On the other hand, given the opaque and unregulated market setting, these exchanges may exacerbate conflicts of interests between the bloc of lead bank and syndicate members and the creditor.

3 Hypothesis Development

Consider a borrower who owns a project but lacks the financial resources to carry it out.⁴ The borrower delegates the lead bank (L) to form a syndicate for a loan of size 1; it then shares the returns of the investment with the lead bank. A continuum of potential members of the syndicate (M) operate in perfectly competitive financial markets and have the financial resources to fund the project. We denote by A, with 0 < A < 1, the maximum amount of the loan that the lead bank can pledge. A then represents the lead bank's liquidity.

The borrower's project can be one of two types: the good type (G) has a probability of success equal to p; the bad type (B) has a probability of success q < p.⁵ Independent of the borrower type, the project yields R in the case of success and 0 in the case of failure. Throughout the scenarios we consider, the lead bank knows the type of the borrower's project. We use α and $(1 - \alpha)$ to denote the potential syndicate members' (M) prior probabilities that the borrower's project is of type G and type B, respectively.⁶

We assume that only the good borrower's project has a positive net present value (NPV) (pR > 1), and that the bad borrower's project has a negative NPV (qR < 1 - A). Moreover, we assume that the project return to the lead bank representing a bad type (qR - A) is positive, which makes it costly for the lead bank to signal the good type and achieve separation from the bad type. As a result of this assumption, a lead bank representing a good borrower would be strictly better off if it could truthfully disclose its information about the quality of borrowing.

We now describe the funding contracts. A sharing rule determines how the project returns are divided between the lead bank L representing a firm of a given type j $(R_{j,L})$

⁴We extend the model in Tirole (2006), Chapter 6, which in turn uses the mechanism design approach in Maskin and Tirole (1990) to solve the contract's design problem. In this section, we describe the model we use to derive our empirical predictions. See the Internet Appendix (Appendix A) for formal derivations.

⁵The predictions of the model would not change if the lead bank had superior information on the cost of monitoring the borrower (see the discussion below).

⁶Parameter α can be interpreted as the fraction of good-type borrowers in the economy or the probability that a given borrower is of type G.

and the syndicate members M $(R_{j,M})$, with j = G, B and $R_{j,L} + R_{j,M} = R.^7$ The sharing rule is complemented by two additional components. The first is a decision rule on whether the loan is extended by the syndicate members to a firm of a given type j = G, B $(x_j \in [0,1])$. The second is the amount of cash that the lead bank L invests in the loan $(A_j \leq A)$.

The lead bank L holds all the bargaining power. It designs contracts that can be accepted or rejected by the syndicate members M. When indifferent, L will prefer not to commit any cash to the loan. This reflects, for example, the presence of alternative investment opportunities that are more remunerative than the borrower's project. We solve for the perfect Bayesian equilibrium of the contract design game. When solving the model, we parameterize the level of common ownership between the lead bank and the syndicate member by κ , capturing the weight that the lead bank L places on the utility of the commonly owned syndicate members M. Finally, all agents in the economy are risk neutral, the lead bank is protected by limited liability, and the risk-free interest rate is nil.

We solve the model under two scenarios: the first is the case without common ownership ($\kappa = 0$); while the second considers the case with common ownership ($\kappa > 0$). The lead bank can use common ownership to truthfully channel its private information regarding the borrower's probability of success to the commonly owned syndicate members. In other words, in this model common ownership is equivalent to an information transmission technology.

Funding without common ownership We first consider the case without common ownership ($\kappa = 0$). We derive the low-information-intensity optimum of the contract design game (Rothschild and Stiglitz, 1976; Wilson, 1977). This corresponds to the separating allocation that maximizes the utility of the lead bank representing a good borrower subject to the constraint that the lead bank representing a bad borrower does not receive a rent. In practice, this separating contract is unappealing to a bad borrower and allows the potential members to break even.⁸ In the discussion below, we describe the merits of this choice.

⁷The share of the lead bank is then split between the lead bank and the firm according to a bargaining game outside the model.

⁸Our assumptions guarantee that this optimum allocation exists across the cases we consider (with and without common ownership). The low-information-intensity optimum is the unique perfect Bayesian equilibrium of our game under a condition on the parameter α . If this condition is not satisfied, there may also exist pooling equilibria (see the discussion below).

In equilibrium, if potential syndicate members subscribe the loan, the lead bank must choose between the contract targeting the bad borrower and the one targeting the good borrower. By construction, this choice is incentive compatible. The contract targeting a lead bank representing type B is such that this firm will not be funded. To achieve separation, the contract targeting a lead bank representing type G does two things. First, it requires the lead bank L to pledge all its funds as a signal that it is confident about the good borrower's future returns ($A_G = A$). Second, the reward to the lead bank L is determined by the mimicking condition of the bad type: the lead bank picks the largest repayment that makes the lead bank representing a bad type indifferent between accepting the contract targeting the good type and remaining inactive ($R_{G,M} = R - A/q$). The good-type contract can be implemented by a debt contract featuring M transferring 1 - A upfront and receiving R - A/q if the project succeeds.

Funding with common ownership Consider now the case in which the lead bank places a weight $\kappa > 0$ on the utility of the commonly owned potential syndicate members; the objective function of the lead bank is formalized in Equation (A.9) in the Internet Appendix (Appendix A). Specifically, there is a fraction of commonly owned potential syndicate members (M_{Co}) and a complementary fraction that are not commonly owned with the lead bank (M_{NCo}) . In line with our empirical application, any contract offered by the lead bank features the same reward to M_{Co} and M_{NCo} (so that $R_{j,M} = R_{j,M_{Co}} = R_{j,M_{NCo}}$, with j = G, B).

We model common ownership as an information transmission device. We say that information transmission can happen only if $\kappa \geq \underline{\kappa}$, and then empirically identify the threshold $\underline{\kappa}$ in the application.

The lead bank can credibly channel its private information regarding the borrower's probability of success to the commonly owned syndicate members M_{Co} . As a consequence, M_{Co} are perfectly informed about the type of borrower. M_{NCo} observe the choice of the commonly owned syndicate members M_{Co} , and know that the lead bank shares its private information with M_{Co} , but do not observe the type of the firm represented by the lead bank L.

We construct an equilibrium in which the lead bank representing a bad borrower does not get access to funding. Instead, the lead bank representing a good borrower will get the equilibrium contract with symmetric information. In particular, the loan to the good firm is fully underwritten by the members of the syndicate ($\mathcal{A}_G = 0$) in exchange for the transfer for $R_{G,M_{Co}} = R_{G,M_{NCo}} = 1/p$. Since they know that the lead bank L channels its private information to the commonly owned syndicate members M_{Co} , the non-commonly owned syndicate members M_{NCo} are able to infer the type of borrower represented by L based on the contracts offered by L and M_{Co} 's decision to accept or reject the offer. As a consequence, they accept the symmetric-information contract if the commonly owned investors M_{Co} accept it. It is optimal for the lead bank to offer the symmetric-information contract because it yields the full NPV of the project. The lending contract can be interpreted as a debt contract in which the members of the syndicate lend 1 upfront and get 1/p in the case of the project's success, or else the borrower goes bankrupt.

Empirical predictions We now list the empirical predictions of the model (see the Internet Appendix (Appendix A) for their formal derivation). Our null hypothesis is that sufficiently high levels of common ownership facilitate information transmission.

Proposition 1. Comparing the lending conditions (interest rate and amount of the loan retained by the lead bank) with and without common ownership, we find that:

- 1. The interest rate charged by syndicate members is lower with high common ownership than without common ownership;
- 2. The lead bank commits more funds to the loan without common ownership than with high common ownership;
- 3. Without common ownership, we observe rationing at issuance. We do not observe rationing at issuance with high common ownership;

Absent common ownership, the separation of borrower types (good and bad) requires that the lead bank representing a good borrower is less greedy (compared with high common ownership) and promises higher rewards to the syndicate members. To achieve separation, the lead bank representing a borrower with a good project signals its type by committing A in the loan. The second implication in the proposition depends on the fact that, with low common ownership, the lead bank conveys the quality of the loan by means of a costly signal (loan retention). With high common ownership, instead, separation is achieved thanks to the channeling of the lead bank's private information to the commonly owned investors. Finally, for the third implication in the proposition, we assume heterogeneous lead banks with respect to the value of A that they can commit to the loan, so that only the lead banks with sufficiently large funds can offer the separating equilibrium contractual terms that avoid the breakdown of capital markets.

3.1 Discussion

Common ownership and interest alignment We now consider the situation in which common ownership purely serves as a mechanism to align interests across lenders (Antón et al., 2023), and there is no information transmission. We still expect common ownership to impact the design of the contract because, in contrast to the case without common ownership, the objective function of the lead bank features a weight $\kappa > 0$ attached to the utility of commonly owned syndicate members M_{Co} .

The key difference is in the lead bank's decision to retain a share of the loan. With information transmission, the lead bank representing a good borrower does not need to engage in costly signaling to achieve type separation and, in equilibrium, $\mathcal{A}_G = 0$. If, instead, common ownership only has interest-alignment purposes, in the low-information-intensity optimum, the contract targeting the good borrower must signal the good type by committing all the liquidity of the lead bank to the loan ($\mathcal{A}_G = A$). Thus, if common ownership was mainly about interests' alignment, we should not find evidence consistent with Prediction 2 in Proposition 1 in our empirical application.

Common ownership and pipeline risk Bruche et al. (2020) study the situation in which the lead arranger syndicates a loan with the intention of selling it soon after under the risk that the loan becomes a "hung" deal (pipeline risk). The crucial difference with respect to our setting is the source of information asymmetry. In their model, potential investors (the market) hold private information on their loan valuation. Thus, the lead bank designs the contracts to maximize its profits under demand discovery. If common ownership allows the investors to transmit information to the lead bank credibly, the predictions would be similar to ours: it is unnecessary to retain a share of the loan or underprice the loan in the low-demand state.

The reversal of the source of asymmetric information results in a test on the directionality of the information flow to study how common ownership interacts with pipeline risk. When looking at the weights that the syndicate members put on the profit of the lead arranger (from the investors to the lead arranger), we should find the same effects as in our primary empirical analysis. This is different from our setting; as we conjecture that the lead bank holds superior information and we focus on the heterogeneity of borrowers' creditworthiness, we use the weights that the lead bank puts on the profit of syndicate members (from the lead arranger to investors) as a proxy for common ownership. In Section 7.2, we find no statistically significant effect under the directionality test.

Model assumptions Although the predictions of our model are derived under the assumption that the lead bank holds private information on the expected return of the borrower, the qualitative results of the model would not change if the lead bank had superior information on the cost of monitoring the borrower (Sufi, 2007). If monitoring costs are unobservable to syndicate members, the lead bank needs to retain a share of the loan to signal that it has the incentive to exert the monitoring effort. Moreover, costly signaling would cause a lower reward to the lead bank and hence a larger reward to the syndicate members.

Tirole (2006) shows that, depending on the value of prior beliefs α , there may exist pooling equilibria in which both types are better off than in the separating allocation considered without common ownership. In such equilibria, the lead bank chooses between accepting a contract in which the borrower is rewarded only in the case of success and a contract with an upfront lump-sum payment A and no investment. In practice, the lead bank representing a bad borrower, which chooses the second option, is offered a bribe to go away. Our focus on the separating equilibrium in the analysis without common ownership is motivated by the fact that such pooling contracts are not offered in syndicated lending. Nonetheless, they still satisfy our prediction on the lead bank's commitment of A in the loan.

Finally, other costly signals could be used to achieve the separation of types without common ownership. For example, the borrower could accept shorter maturities or pledge collateral. However, the non-price dimensions of syndicated loans are set before the marketing stage; that is before syndicates form at the facility level. Moreover, except for maturity, the non-price attributes do not vary across facilities. Any correlation with common ownership would therefore be spurious or non-consequential.

4 Data

Our sample is constructed in two steps: in the first step, we assemble a sample of borrower-bank-loan-facility observations between 1990 and the first quarter of 2017; and in the second, we combine our data with information from Thomson Reuter S34 to determine the common investors of the lead bank and the syndicate members within a loan.

4.1 Sample Construction

Syndicated Loans Our primary data source is the Loan Pricing Corporation's (LPC) DealScan database, which identifies bank-borrower relationships. DealScan contains detailed information on the loan, such as the interest rate paid to the lender group measured in basis points (the all-in drawn spread, which is the sum of the spread of the facility over LIBOR and any annual fees), loan size, loan type (credit line or term loan), purpose (mainly corporate, excluding leveraged buyout), and the presence of collaterals. We restrict the sample to loans issued by commercial banks incorporated in the U.S. to U.S. non-financial firms between 1990 and the first quarter of 2017. In addition, we remove from the sample all loans with split structure in terms of financial covenants; these are term loans tranches that lack financial covenants, while the credit line tranche contains traditional financial covenants. Following Berlin et al. (2020), we create an indicator for split control rights within a loan using the market segment data. If the term loan in a deal is identified as covenant-lite, we assume that the revolver has maintenance covenants and identify the deal as having split control rights. Following Ivashina and Sun (2011), we also exclude second-lien term-loan facilities so that our sample includes only senior facilities; differences in spread across facilities of the same type within a loan cannot arise from differences in their seniority.

We identify the participants in a syndicate at the loan-facility level. Following Ivashina (2009), we classify a bank as a lead bank if its Lender Role field in DealScan is one of the following: administrative agent, agent, arranger, book-runner, coordinating arranger, lead arranger, lead bank, lead manager, and mandated arranger. We then use linking tables from Chava and Roberts (2008) and Schwert (2018) to merge the loan data with borrower and lender characteristics from Compustat, including borrower size, profitability and rating (investment-grade, high-yield, and unrated) and lender size and profitability. ¹⁰

Common Ownership To compute our common ownership measures, we use several sources. The primary one is the Thomson Reuters S34 database, which consolidates information from the mandatory 13F SEC filings that all institutions with at least \$100 million of assets under management have to report at quarterly frequency. We com-

⁹In the residual case in which no lead bank or multiple ones are identified, we attribute the role of lead bank to the banks for which the field "Lead Arranger Credit" is marked with "Yes".

¹⁰Schwert (2018) hand-matches DealScan lender names with Compustat GVKEYs for all lenders with at least 50 loans or at least \$10 billion in loan volume. The matching table takes into account bank subsidiaries and bank mergers during the sample period.

plement the Thomson Reuters S34 data with hand-collected 13F holdings from Backus et al. (2021b) and aggregate Blackrock holdings filed separately under different entities (Ben-David et al., 2021). We also use information on the 13D/G filings assembled by Schwartz-Ziv and Volkova (2020) for large (above 5%) shareholders; we, therefore, take 13D/G filings into account when 13F disclosures are not applicable, for example when the assets are owned by individuals. In addition, we conduct sample checks on other filings reporting information on insider holdings of executives and board members (Forms 3, 4, 5, and 144). These holdings are substantially lower than 5% and have a minor effect on our common ownership measure; we, therefore, ignore these individual stakes. Finally, we collect data on shares outstanding from the Center for Research in Securities Prices (CRSP), which we merge to historical CUSIP bank codes. The resulting sample allows us to determine which banks within a loan relationship have common institutional investors and the extent of overlapping ownership at syndicate member-facility-loan level.

4.2 Measures of Common Ownership

The literature proposes several measures of common ownership: see O'Brien and Salop (2000), Antón and Polk (2014), Newham et al. (2022), and Gilje et al. (2020). We adopt the profit weights approach based on the theory of partial ownership developed by Rotemberg (1984). This approach is closely linked to our model and to the theoretical literature on common ownership. In the Internet Appendix (Appendix B), we replicate our main analysis using an alternative, model-free measure of common ownership and obtain similar results.

As in Rotemberg (1984), we assume that the lead bank maximizes a weighted average of shareholder portfolio profits. To construct the profit weights, we rely on O'Brien and Salop (2000). Each lead bank a places a weight κ_{ab_i} on the profit of each syndicate member bank in facility i (b_i) that is overlapping in ownership:

$$\kappa_{ab_i} = \frac{\sum_{s \in S} \gamma_{as} \beta_{b_i s}}{\sum_{s \in S} \gamma_{as} \beta_{as}},\tag{1}$$

where S is the set of shareholders of lead bank a, and γ and β are, respectively, the voting and cash-flow rights of each investor s. These weights capture the importance to each lead bank of a dollar of profit generated by the syndicate members. We follow the vast majority of the literature and assume that one share corresponds to one vote (the

proportionality of voting rights): $\gamma_{as} = \beta_{as}$ and $\gamma_{b_i s} = \beta_{b_i s}$.¹¹

Given Equation (1), the average weight that the lead bank a places on the profit of other syndicate members in each facility i is:

$$CO_{ia} = \frac{1}{B_i} \sum_{b=1}^{B_i} \kappa_{ab_i},\tag{2}$$

where $B_i \in [1, \overline{B}]$ is the number of syndicate members in each facility i. We consider other choices to aggregate profit weights between the lead bank and members at facility level, such as the median and mode, and find that estimation results remain unchanged. Finally, we repeat the same exercise to determine the degree of common ownership between: (i) borrowing firms and banks; (ii) syndicate member to lead arranger $\kappa_{b_i a} \neq \kappa_{ab_i}$. Measure (i) will be an additional control to account for the presence of common and cross ownership between vertically related firms; measure (ii) will be useful to run a falsification test of our hypotheses.

Following Backus et al. (2021b), we decompose the profit weights in Equation (1) to study the sources of common ownership variation at the facility level. Let $IHHI_a = \|\beta_a\|^2$ be the Herfindahl-Hirschman Index for the investors in company a. Define $\cos(\beta_a, \beta_{b_i})$ as the cosine similarity between vectors a and b_i , representing the cosine of the angle between the positions that investors hold in a and those that investors hold in b_i . Backus et al. (2021b) show that:

$$\kappa_{ab_i}(\beta) = \underbrace{\cos(\beta_a, \beta_{b_i})}_{\text{overlapping ownership}} \cdot \underbrace{\sqrt{\frac{IHHI_{b_i}}{IHHI_a}}}_{\text{relative IHHI}}.$$
(3)

The first term is the overlapping ownership, which captures the similarity in investor positions. For investors holding positions in both the lead bank a and a syndicate member bank b_i , a higher position will determine a smaller angle with cosine similarity approaching one. The second term captures the relative concentration of investors. Ceteris paribus, if the lead bank has fewer, larger investors, then the value of $IHHI_a$ is large, control rights are relatively expensive, and profit weights $\kappa_{ab_i}(\beta)$ are smaller. Conversely, if the lead bank has many small investors, the value of $IHHI_a$ is small, control rights are relatively cheaper, and profit weights $\kappa_{ab_i}(\beta)$ are larger. In the descriptive analysis below, we use

 $^{^{11}}$ See Backus et al. (2021b) for a discussion on the importance of the one-share one-vote assumption and other measures of common ownership.

the decomposition in Equation (3) to document the patterns of common ownership.

Finally, we define as common owners all institutions filing the mandatory 13F SEC filings (or, less frequently, 13D/G). In a limited number of cases, those institutions are asset management divisions of the lead bank itself: more precisely, direct investment of a lead bank in other lenders configures a situation of cross-ownership rather than common ownership. We identify those management divisions and create profit weights that exclude them as common shareholders while controlling for the presence of cross-ownership. As those divisions tend to hold very low equity in other lenders, the distribution of profit weights is practically unaffected by such exclusions. For simplicity, our main measure of common ownership, therefore, includes those institutions as shareholders, whereby separately controlling for cross ownership does not affect our results.

4.3 Summary Statistics

Table I provides the summary statistics. Our final sample consists of 38,523 borrower-bank-loan-facility observations. We observe 17,437 loans granted to 3,990 firms between 1990 and the first quarter of 2017. We identify 70 lead banks. The average syndicate size is 10.5 members. Syndicates extend loans of \$1,075 million on average. Every loan comprises a number of tranches called facilities, which are our unit of observation. On average, a syndicated loan consists of 1.9 facilities. The average facility spread is 188 basis points and the average amount \$617 million; 49% of loans are secured by collateral. Most facilities in our sample are credit lines (68%). On average, lead banks retain 19.3% of the facility amount, and this variable is reported for less than half of the observations in our sample.

Common ownership patterns In the U.S. banking sector, the four largest asset managers (Blackrock, Vanguard, State Street, and Fidelity) hold together around 20% of the four largest commercial banks' shares in 2017. Figure 1 documents the striking increase in common ownership during our sample period, confirming the findings of previous studies (Azar et al., 2018; Backus et al., 2021b). We calculate profit weights at the facility level and find that on average, lead arrangers have a weight of 0.71 on the profits of the other syndicate members, with an increase from 0.39 in 1990 to 0.82 in 2017. We trim

¹²In the summary statistics, we present two aggregate types: credit lines and term loans. In the data, we observe more granularity, with different types of term loans (A, B, C, and higher designations). We account for these types in the empirical application. Following Lim et al. (2014), we consider all facilities with designation B or higher as term loan B and use the following three categories for facility types: (i) credit line; (ii) term loan A; and (iii) term loan B and higher.

our measure of common ownership at the 1% level of the right tail of the distribution to make sure that our results are not driven by outliers.

To interpret these patterns, we decompose the profit weights into overlapping ownership and relative investor concentration: see Equation (3). Figure 2 shows the results of such decomposition between 1990 and 2016. The blue bar represents the lowest quintile of our measure of common ownership, and the red bar represents the highest quintile. The decomposition shows the two underlying forces driving the growth in profit weights over the sample period. Panel (a) depicts the clear increase in profit weights, $\kappa_{ab_i}(\beta)$, over time. Panel (b) shows that cosine similarity, $\cos(\beta_a, \beta_{b_i})$, is, as expected, higher at high levels of common ownership and increasing over time as common investor positions in lenders have become larger over time. Panel (c) depicts the relative investor concentration, $\frac{IHHI_{b_i}}{IHHI_a}$, and Panel (d) represents the average concentration level of investors in lead banks only, $IHHI_a$. Taken together, panels (c) and (d) show that while relative investor concentration is rather constant over time, control rights in lead banks characterized by high common ownership have become somewhat cheaper: investor concentration for the lead banks is lower at the top quintile of common ownership, and the gap in investor concentration between the bottom and the top quintiles has increased over time. Such a shareholder structure allows common investors to influence the lead banks' strategies more effectively. With the lead bank having several small investors, $IHHI_a$ will be small and control rights cheaper. This is partly driven by the growth of retail shares at higher levels of common ownership: as retail investors do not have incentives to engage in active governance, they leave more room for common owners to influence the lead banks' strategies.

A variance decomposition for all lead bank-member pairs of profit weights reveals that around 70% of the variation in profit weights comes from overlapping concentration, and relative investor concentration never falls below 30%. Investor concentration has an impact in shaping the variation in profit weights both in the cross-section and over time; for example, at the lowest quintile of common ownership, institutional investors tend to be large and undiversified, thus the lead banks put more weight on their own profits.

4.4 Connections between Lenders and Common Ownership

We look at connected executives and directors (interlocks) as a simple information transmission mechanism across lenders. Our focus on interconnections between lenders through directors and executives arises from the fact that, for these large-scale loans, most loan officers are directors or high-level senior executives (vice presidents or treasurers) who

typically report to the board of directors: Gao et al. (2020). Directors alone account for around 12 percent of the bankers responsible for issuing loan contracts. In our sample, the median bank syndicates around 14 loans yearly; only 30 percent of the banks arrange more than 50 loans annually.

For each pair of lead bank-potential syndicate members, we define an interlock as an indicator equal to one if: (i) at least one director or executive has an employment relationship with both banks; or (ii) at least one director or executive from each bank in the pair serves on the board of a common third firm. We also consider the total number of interlocks as an alternative measure of connections between lenders. Information on executives and directors is retrieved from BoardEx, with yearly frequency, for the period 2000-2017.¹³ We then describe the probability of interlocks by regressing the indicators on a measure of common ownership and an extensive set of covariates capturing characteristics of the lender pair.

Table II presents the results of a linear probability model. We empirically document a positive relationship between common ownership and interlocks; that is, pairs of lead bank-potential syndicate members with higher levels of common ownership are more likely to exhibit interlocking executives or directors. This positive association remains significant after controlling for (i) characteristics of the lenders (their size, equity, book leverage, return on assets, and whether they belong to the S&P 500); (ii) characteristics of the lender pairs (their portfolio similarity and their past relationships); and (iii) year dummies. These results support the hypothesis that, in our setting, common ownership can constitute a communication device between firms if it is sufficiently large, as executives and directors are more likely to overlap at higher levels of common ownership.¹⁴

Our findings complement the work of Azar (2021), providing evidence that firms with common owners are more likely to share directors, and Nili (2020) and Eldar et al. (2023), documenting the rise of so-called horizontal directors, serving on the boards of multiple companies within the same industry; our analysis extends beyond directors to all senior executives. Of course, interlocks are only one of the possible forms of information

¹³Our common ownership measure is built at quarter-year level. Because the information on executives is at yearly frequency, we use the measure of common ownership from the last quarter of each year.

¹⁴The literature has amply documented the role of directors on the success of acquisitions (Hilscher and Şişli-Ciamarra, 2013), especially directors with investment banking experience sitting on a board of non-financial firms (Huang et al., 2014), and the implications of conflicts of interest when a bank's relationship with a borrower is affected by extra control rights (Kroszner and Strahan, 2001; Santos and Rumble, 2006; Jagannathan et al., 2020). Finally, Ferreira and Matos (2012) find that in the presence of common directors between bank-borrower pairs, the bank is more likely to be chosen as a lead arranger because of the connected bank's informational advantage over other banks.

transmission between lenders in the presence of common ownership. In addition, common ownership renders such communication credible, as it aligns the parties' interests. For this reason, we will use our measures of common ownership to test the hypotheses generated by the model rather than proxies, such as interconnections, likely subject to measurement errors.

5 Estimation and Results

We now investigate whether the three predictions of Proposition 1 are verified in the data. For each prediction, we first present the empirical specification. We then discuss the identification strategy, highlighting the key sources of identifying variation in the data. Finally, we present the results.

5.1 Interest Rates

5.1.1 Empirical Design

According to Prediction 1 of Proposition 1, the interest rate paid to the syndicate members will be lower at higher levels of common ownership. We test the prediction by estimating the following equation:

$$Spread_{iat} = \beta_0 + \beta_1 CO_{iat} + \beta_2 X_{iat} + \varepsilon_{iat}, \tag{4}$$

where the dependent variable $Spread_{iat}$ is the all-in-drawn spread paid to syndicate members of facility i arranged by bank a in quarter t. We omit the subscript for the borrowing firm to simplify the notation. The variable of primary interest, CO_{iat} , is the average weight that the lead bank a puts on the profits of other syndicate members present in a specific facility i, as defined in Equation (2). Prediction 1 translates into the prediction that the coefficient β_1 is negative when common ownership is high enough, where the threshold $\kappa \geq \underline{\kappa}$ is empirically identified. Our estimated β 's do not estimate either the parameters of the demand curve or those of the supply curve, but instead the effect of each covariate on the equilibrium outcomes.

The vector of variables X_{iat} includes an extensive set of controls related to: (i) the loan and the facility; (ii) the borrower; and (iii) the lender. We also account for relationships of common ownership between lenders and borrowers: under the lens of a vertical integration model, common ownership between lenders and borrowers may result in lower prices for

the borrower as common ownership eliminates double marginalization and reduces information asymmetries. Other facility and loan-related controls include facility amount, the number of participants, the arranger's past relations with syndicate participants and with the borrower, the presence of collateral, the presence of non-bank institutional lenders as members (including collateralized loan obligations, CLOs), and the maturity of each facility. The rationale for using the facility amount and other non-pricing features of the loans as controls is that those characteristics are fixed before the syndication process. If we remove those controls, our estimates are essentially unchanged. We also control for the three-month LIBOR rate at origination, as the literature documents a relationship between the LIBOR rate and loan spreads (Roberts and Schwert, 2020). Borrower-related controls include the borrower's size measured in assets, profitability, and a measure of leverage defined as book debt over total assets. Finally, lenders' related variables include their size, capital, and profitability. Following Antón et al. (2023), in our specifications, we use quintile dummies of the lender's size to address the concern that the common ownership variable may be picking up non-linear effects of the lender's size. The full set of controls X_{iat} is listed in Table B.II.

In addition to our time-varying set of controls, we employ multiple fixed effects to difference out alternative interpretations, such as confounding effects of demand and supply variations. The inclusion of fixed effects for facility type and loan purpose ensures that our results are not driven by omitted characteristics at the facility level. In our baseline specification, we also include industry-year-quarter fixed effects to control for aggregate variation in demand for syndicated loans in each sector, as well as the aggregate time-varying propensity towards risk in each sector. We, therefore, base our inferences on within industry and year-quarter variations so as to difference out the fact that important events, such as the financial crisis of 2008, may have had differing impacts across industries. Borrower fixed effects account for unobserved time-invariant heterogeneity across borrowers. Finally, to capture time-invariant supply factors (for example the fact that the lead arranger may specialize in loans with specific features), we add lead bank fixed effects.

Our coefficient of primary interest (the one on common ownership) is mainly identified by the cross-sectional variation that arises from differences in the composition of the syndicate both across facilities and across loans. Specifically, as we use year-quarter fixed effects, interacted with the industry in which the borrower operates, the coefficient is identified by the within variation in common ownership among facilities and loans that differs from the average common ownership level faced by borrowers in a certain industry and period. Persistent differences in common ownership across borrowers and lead

arrangers are absorbed by our fixed effects at borrower and lead arranger level.

Before presenting the coefficient estimates, we assess the importance of each source of variation. We regress our common ownership measure on all the covariates included in the main specification, and then partition the variance of the residual into three components: (i) variance in industry-year-quarter, borrower, lead arranger, facility type and loan purpose; (ii) variance across loans within an industry-year-quarter; and (iii) variance across facilities within a loan. We find that the first component explains around 69.0% of the total variance in common ownership: this is the portion of variance absorbed by our fixed effects and time-varying controls. Variability in common ownership across loans and facilities, after accounting for the fixed effects and the controls, accounts for 24.9% of the variance in common ownership. The remaining 6.1% arises from differences in common ownership attributable to variation across facilities within a loan, and this is the variation that we will exploit in the within-loan specifications (see below).

5.1.2 Panel-regression Estimates

Table III presents the estimation results for the coefficients of primary interest. Columns 1 and 2 of Table B.III in the Internet Appendix (Appendix B) report the full set of coefficient estimates. The estimated coefficient indicates that an increase of one standard deviation in common ownership is associated with a lower spread of 5.26 basis points (column 1).

To understand how price reductions vary across the range of common ownership, we discretize our common ownership measure into five indicator variables corresponding to the quintiles of its support. Column 2 of Table III shows that reductions in spread are relevant only for high levels of common ownership (quintiles 3 to 5, corresponding to 60% of the facilities in our sample), and those reductions are monotonically increasing in common ownership. Assuming no changes in spread for the omitted category (the first quintile), the point estimates represent the average change in spread for loans in each quintile. Our results are not only statistically significant but also economically significant: within a quintile, a change in common ownership in a facility from the minimum to the maximum level reduces the price by 6.7 to 15.0 basis points. The average facility spread in quintiles 3, 4, and 5 of common ownership is around 190 points.

Of course, common ownership is not the only mechanism for overcoming moral hazard and adverse selection in the syndicated loan market. We also control for the fraction of loans that the lead lender had with the same members over the preceding three years (the relationship score), and "reciprocity" in lender participation, whereby the lead and the member banks in one loan switch their roles as lead and participants in another syndicated loan; following Cai (2010), we define past reciprocity depth as the average fraction of reciprocal loans taken by the lead arranger on the 12 quarters prior to loan origination.¹⁵ Reputation effects are captured by lead bank fixed effects.

The relationship score has a slightly lower effect on prices than common ownership; an increase of one standard deviation in the relationship score is associated with a lower spread of 4.9 basis points (column 1 of Table B.III); similarly, an increase of one standard deviation in the reciprocity depth is associated with a reduction in spread by 1.7 basis points. Our results show that common ownership complements other mechanisms mitigating information asymmetries.

Non-investment grade loans and common ownership Recent literature has focused on the market of non-investment grade loans, which is a rapidly growing segment characterized by originate-to-distribute loans. Pipeline risk, the risk that the loan becomes a "hung" deal, may arise when the market is unwilling to absorb the loan under the conditions arranged by the lead bank: Bruche et al. (2020). Table B.IV in the Internet Appendix (Appendix B) presents our empirical analysis that deals with pipeline risk.

First, in column 1, we exclude from our sample non-investment grade loans. Our results hold; an increase in common ownership decreases loan prices, with a smaller effect with respect to the main specification, as asymmetric information plagues investment-grade loans to a lesser extent. Second, in column 2, we include time-on-the-market as a control, namely the number of days from the start to completion of syndication, as a proxy for the mismatch between the loan pricing and market demand (hot or cold deals). Our results are strengthened by the inclusion of the variable; the coefficient of common ownership is larger in magnitude and significant, notwithstanding the limited sample size. Third, based on our theoretical model, high common ownership should be associated with lower average time-on-the-market as information asymmetries between the lead arranger and investors should be mitigated. The hypothesis is empirically verified, with a negative relationship between common ownership and time-on-the-market for non-investment grade loans, for which pipeline risk is most relevant (column 3).

¹⁵Cai (2010) uses four measures of reciprocity: reciprocity existence, breadth, depth and length. Our results are robust to all the definitions proposed by the author. We focus on reciprocity depth because this measure is most suitable in our setting and less prone to multicollinearity issues with the other covariates. We also define a reciprocity measure that is not only lender, but also borrower-specific; our results hold.

Robustness The Internet Appendix (Appendix B) contains the results of several robustness tests. Our results are robust to the inclusion of different sets of fixed effects, as reported in Table B.III. In particular, in column 3, we include the interaction of lead indicators and year-quarter fixed effects (rather than the additive specification with lead bank and year-quarter fixed effects). The interaction rules out possible sorting based on unobservable variations in the risk preferences in each lead arranger; the magnitude of the common ownership coefficient is similar.

In column 4, we consider borrower-year fixed effects to control for unobserved timevarying borrower heterogeneity, where estimates indicate an even larger reduction in spread associated with high common ownership.¹⁶

The syndicated loan market is concentrated. JP Morgan and the Bank of America are the most active lead arrangers, with around 63% of the loans in the sample (77% in value). We repeat our analysis excluding the loans arranged by these two banks, with the results reported in column 5. The coefficient estimate of common ownership is negative, larger in magnitude, and somewhat noisier given the reduction in sample size; the result confirms the effectiveness of our controls at the lead arranger level and that the negative effect of common ownership on prices is not driven only by the two main actors in this market, but impacts the market as a whole.

In column 6, we show the results of a logarithmic specification for the dependent variable; the magnitude of the coefficient of common ownership is similar. We conclude that our results are not driven by outliers.

We consider the pricing structure of loans more holistically, particularly the comprehensive total-cost-of-borrowing measure developed by Berg et al. (2016), which accounts for fees, spreads, and the likelihood that they will have to be paid. Fees are used to price options included in loan contracts and to screen borrowers, as those borrowers self-select into a specific fee structure based on private information. Column 7 of Table B.III shows that our results are robust when using this alternative measure of the cost of debt.

Our common ownership measure, mainly based on 13F filings, is most accurate for public U.S. banks, even though we construct a control for non-bank syndicate members. In column 8 of Table B.III, we restrict the sample to deals including only U.S. public banks, thus removing deals with non-banks or foreign lenders as members. Our results hold and the coefficient of common ownership is larger in magnitude.

¹⁶Following Degryse et al. (2019), we prefer the use of year-quarter-industry fixed effects as our main specification. The use of borrower-year fixed effects implies the loss of single-period borrowers which could bias our results.

Table B.V reports the same empirical specification using an alternative definition of common ownership as the average of the minimum commonly held shares between the lead arranger and the syndicate members (Newham et al., 2022). Here, the parameter estimates suggest an even stronger effect of common ownership on spread.

Finally, in our main specification, we aggregate κ_{ab_i} by taking an equal-weighted average of the weights within a facility: see Equation (2). We test the robustness of our results by taking the value-weighted average of the weights on the profits of the syndicate member; the value weighting is the stock market value of each member bank b. Table B.VI replicates Table III using the value-weighted common ownership measure; the results are very similar.

5.1.3 Within-loan Estimates

We now focus on pricing differentials between different facilities of the same type within a loan with varying degrees of common ownership. This identification strategy was first used by Ivashina and Sun (2011) and later adopted by Lim et al. (2014). It rules out the possibility that the variation in spread associated with common ownership reflects omitted characteristics related, for example, to borrower risk that systematically correlates both with price and common ownership. In addition, the choice of a specific facility should mainly depend on lender-specific preferences and not on the degree of common ownership. As a credit event on one or more facilities within a loan triggers the default of the entire loan (loans with split control rights are removed from the sample), facilities of the same type and in the same loan essentially reflect the same underlying risk characteristics. Importantly, we control for any remaining differences across facilities of the same type (size and maturity) that may influence their pricing.

We exploit the variation in pricing arising from the set of 463 loans with multiple facilities of the same type. We estimate Equation (4) on this subsample, with results reported in columns 3 and 4 of Table III. The estimates again confirm our hypothesis that price reduces as common ownership increases. Our estimates imply a spread reduction of an even greater magnitude with respect to the above estimation; that is, within a quintile, a change in common ownership in a facility from the minimum to the maximum level reduces the spread by roughly 20 basis points. Note that the effect is very close in magnitude to column 4 of Table B.III (the coefficient is -48.0 versus -48.3), in which we leverage within borrower-year variation, thus absorbing the borrower's default risk. ¹⁷

¹⁷An even more demanding test of the hypothesis comes from cases in which we have the contemporaneous presence of facilities of the same type displaying high and low common ownership within a

5.1.4 Difference-in-difference Design

To further support the causal interpretation of our estimates, we employ a strategy that is based on exogenous shocks to common ownership; following He and Huang (2017) and Lewellen and Lowry (2021), we identify 18 mergers between non-bank financial institutions. We consider those mergers plausibly exogenous shocks to lenders' common ownership as asset managers do not directly own syndicated loans in their portfolios. By the same token, we do not consider bank mergers as the loan portfolio directly owned by financial institutions could be pivotal to the merger decision. We calculate the hypothetical increase in common ownership between lenders in the quarter before the announcement of each merger; none of those mergers generates a significant change in common ownership between lenders, except for the largest one, BlackRock's acquisition of Barclays Global Investors (BGI) in 2009. We explain below that our setting is robust to the points raised by the literature when using mergers as an exogenous shock. Lewellen and Lowry (2021) scrutinize the use of the BlackRock-BGI merger to identify firm-level effects; their main criticisms relate to the sample period (the post-merger period coincides with the financial crisis) and the differential impact of the financial crisis on control and treated groups.

As detailed by Azar et al. (2018), the history of the acquisition, with Barclays' attempt to sell to investors other than BlackRock, suggests that the deal was not driven by considerations on the combination of the portfolio of BlackRock and BGI for potential future syndicated loans and the "no anticipation" hypothesis is likely to hold.

We calculate: (i) the level of common ownership in the quarter before the acquisition was announced (2009 Q2) for each bank-pair present in our sample; (ii) the counterfactual level of common ownership for the same period where we treat the holdings of BlackRock and BGI as one entity; and (iii) the implied change in common ownership (CO delta). Similarly to Azar et al. (2018), we define as "treated" lender-pairs as those with a CO delta in the top tercile of the CO delta distribution; lender-pairs in the bottom tercile are the placebo group. Finally, we define the treatment at the facility level when over half of the lead-member pairs in a facility are treated. We use our repeated cross-section of facilities-loans to estimate a 2×2 difference-in-difference specification:

$$Spread_{iay} = \delta_0 + \delta_1 Post_{iay} + \delta_2 Treat_{iay} + \delta_3 Treat_{iay} \times Post_{iay} + \delta_4 X_{iay} + \varepsilon_{iay}, \quad (5)$$

particular loan. We only have 65 loans satisfying the requirement, so we run into issues of small sample size. Nevertheless our results hold: Table B.VII shows that when common ownership is high, syndicate members receive a lower spread on the particular facility relative to a facility with low-common ownership, and the coefficient magnitude is consistent with the above specifications.

where $Spread_{iay}$ denotes the all-in-drawn spread paid to syndicate members of facility i arranged by bank a in year y, $Treat_{iay}$ is an indicator dummy equal to one if in facility i the majority of the lead-member pairs are treated and zero otherwise; $Post_{iay}$ is an indicator equal to one if the loan origination year falls in the post-merger period. Following He and Huang (2017), the post-merger period is one year after the acquisition announcement to avoid potential confounding events affecting the outcome and the ownership ties after the merger. We verify that common ownership is stable in the year following the treatment (till 2010 Q2), and no other relevant events are confounding our identification. In the period before the acquisition announcement, the average spread grew from around 150 basis points between 2005 and 2007 to 209 basis points in 2008 and 360 basis points in 2009; it declines in 2010 to 293 basis points without returning to the pre-crisis level.

While the post-merger period coincides with the aftermath of the crisis, the spread is much higher with respect to the pre-treatment period, which, against our prediction, would suggest a positive relationship between the treatment and the spread. In addition, our identification strategy is not based on sectoral shocks because treatment and controls are defined at the bank-facility-loan level; practically all industries see the presence of loans in the treated and control groups. Differential effects on treatment versus control loans are unlikely to be contaminated by how loans granted to firms in different industries responded to the crisis. In the baseline specification, we also incorporate facility and loan-level covariates, and fixed effects for: (i) facility type, (ii) loan purpose, (iii) sector interacted with year, and (iv) lead arranger.

Finally, commonly owned banks may present different characteristics and fund different borrowers with respect to banks characterized by lower levels of common ownership. In our panel identification, we use an extensive set of controls at the loan level and fixed effects related to the lead arrangers and the borrowers. In the difference-in-difference design, we refine our analysis using the recent doubly robust difference-in-differences estimator proposed by Sant'Anna and Zhao (2020). The estimator tackles the possibility that treated and control loans may differ in observable characteristics; it is a propensity score weighting method robust to either a misspecification of the propensity score model or the outcome regression model.

We also extend the baseline specification in Equation (5), allowing year-specific heterogeneity via two-way fixed effects. The dynamic version allows us to test that pretreatment trends in the treatment-control spread differences are absent (consistent with the parallel-trend assumption). We use both the two-way fixed effect estimator and the more robust estimator proposed by Callaway and Sant'Anna (2021), extending Sant'Anna

and Zhao (2020) to multiple periods.

The results are reported in Figure 3 and Table B.VIII; the most conservative coefficient estimates imply a reduction in the spread of treated facilities by around 40 basis points; the average implied increase in common ownership following the acquisition is about 11 percent. Figure 3, reporting the even-study plot, also shows that pre-trends are unlikely to exist (the null hypothesis of the absence of pre-trends is not rejected with a p-value equal to 0.36).

5.2 Funds Committed by the Lead Bank

5.2.1 Empirical Design

Prediction 2 of Proposition 1 says that at higher levels of common ownership, information sharing between the lead bank and the members of the syndicate implies that the lead bank retains a lower share of funds for each facility in the loan. We test Prediction 2 by estimating the following equation:

Percent Lead Amount_{iat} =
$$\beta_0 + \beta_1 CO_{iat} + \beta_2 X_{iat} + \varepsilon_{iat}$$
, (6)

where the dependent variable is the percent of facility i's amount retained by lead bank a in quarter t. The term X_{iat} includes the same extensive set of controls used in Equation (4) related to: (i) the loan and the facility; (ii) the borrower; and (iii) the lender. As before, we account for variation in facility type and loan purpose by including industry-year-quarter fixed effects to control for aggregate variation in demand for syndicated loans in each sector, and use lead bank fixed effects to capture time-invariant supply factors.

Information on the share retained by the lead arranger is available for only half of the facilities in our sample. Blickle et al. (2020), using an alternative database, document that, for 12% of all loans, the lead arranger sells the entire share within four months, while the average loan duration is four years. These sales are concentrated among term B loans (48%) and leveraged loans (41%). Moreover, in the DealScan data, the retained share is missing not at random. In particular, reported shares at origination tend to under-represent loans for which the lead arranger sales occur (4% in this sample).

We address both challenges in our empirical analysis. First, we exclude all term B and leveraged loans; for those loans, the lead share at origination may not be a good measure for the lead arranger's exposure to the borrower over the loan's duration. The exclusion of leveraged loans also allows us to address pipeline risk. Most of the literature

notes that lead arrangers hold larger shares in loans provided to opaque borrowers to avoid adverse selection and mitigate moral hazard; instead, for originate-to-distribute loans, loan retention could be the result of a "hung" deal, which may happen when the market is not willing to absorb the loan under the conditions arranged by the lead bank: Bruche et al. (2020). Second, we implement Blickle et al. (2020)'s approximation method to compute estimates of the post-origination loan shares held by the lead arranger. The method applies for reported and missing shares using Dealscan information; it addresses both selection bias in reporting and the informativeness of the reported shares.

5.2.2 Coefficient Estimates

Prediction 2 implies that β_1 is negative. Table IV presents the coefficient estimates of Equation (6): column 1 of Table IV reports the effect of our common ownership measure on the share of loan retained by the lead bank without controlling for the issue of selection and misreporting; column 2 reports the effect excluding all term B and leveraged loans from the sample; and column 3 reports the effect computing the share of loan retained by the lead bank using Blickle et al. (2020)'s approximation method. Table B.IX in the Internet Appendix (Appendix B) reports the full set of coefficient estimates.¹⁸

The coefficient estimates of our preferred specifications (column 3) indicate that an increase of one standard deviation in common ownership as measured by CO_{iat} implies a 0.38 percentage point decrease in the amount retained by the lead bank, holding all other variables constant at their mean values. Lead arrangers retain, on average, 14.5% of the facility amount (using the approximation method). We therefore find empirical support for our hypothesis of reduction in the amount retained by the lead bank for each facility when common ownership is sufficiently high.

5.3 Rationing

5.3.1 Empirical Design

According to Prediction 3 of Proposition 1, we expect to observe rationing at issuance with low levels of common ownership, as lead arrangers need to commit larger funds in the loans and their funding resources are limited. On the contrary, as lead banks with high common ownership do not need to signal their type of borrower by committing funds in the loans,

 $^{^{18}}$ In column 3, we exclude from the controls the variables used in the approximation method: facility amount and logged number of members.

they should be able to fund multiple and larger projects. We test the prediction by empirically comparing the intensity of lending relationships between two types of lead arrangers: first, arrangers that in a given quarter experience a prevalence of loans with high common ownership in their portfolio; and second, arrangers with fewer loans in high common ownership in their portfolio. We define I_{CO}^H taking a value of one for lead arrangers with more than 60 percent of the loans in high common ownership and zero with 40 to 60 percent of the loans in high common ownership. We exclude lead arrangers with loans that always present a low level of common ownership (quintiles 1 to 3). Doing so ensures that the two groups that we are comparing present similar characteristics. For the four bank-related variables (bank leverage, profitability, size, and market equity), we verify that the differences between the two groups (high and low common ownership in the portfolio) are low. In particular, we use the normalized differences in the average values; we find test statistics between 0.01 and 0.17 for the variables, well below the rule of thumb of one quarter suggested by Imbens and Wooldridge (2007) and Imbens and Wooldridge (2009). In other words, we select two groups of lead arrangers whose difference in the level of common ownership in a quarter is driven by quasi-random circumstances tied to the differences in fund inflows of potential investors, which in turn determines a slightly different composition in the syndicate and, as a consequence, the level of common ownership in their portfolio.

Following Jiang et al. (2010), we measure the intensity of lending relationships in terms of the number of deals and the dollar amount, both normalized by the size of the lead arranger. We conduct the comparison between these two groups and test Prediction 3 by estimating the following equation:

Intensity Lending Relations_{at} =
$$\beta_0 + \beta_1 I_{CO}^H + \beta_2 X_{at} + \varepsilon_{at}$$
, (7)

where the dependent variable is the number of loans or the dollar amount underwritten by a lead bank a in quarter t normalized by the lead bank size. In all specifications, we include lenders' related controls such as size, capital, profitability, and year-quarter fixed effects.

5.3.2 Coefficient Estimates

Prediction 3 implies that β_1 is positive. Table V presents the estimations of Equation (7). Based on the regression results, lead arrangers with a prevalence of high common ownership in their portfolio underwrite around 13% more loans in a quarter on average than lead banks with low prevalence, or 44% more in terms of amount.

We consider a specification with all lead arrangers present in the sample, and add lead bank fixed effects to account for persistent differences across lead arrangers. Columns 3 and 4 report the results of the specifications; results are robust to this alternative specification.

6 Common Ownership and Syndicate Participation

Our variable of interest (that is, common ownership) is a function of the syndicate structure, namely the set of lenders participating in the syndicate. As the lender's decision to enter the syndicate is not random and may depend, among other factors, on the level of common ownership with the lead arranger and other unobservables collected in the error term, we extend our model to account for this form of self-selection. We assume that the utility maximization problem of potential members can be characterized by a reservation interest rate (spread) or reservation return. The reservation interest rate will depend on the characteristics of the member, along with the assessment on the riskiness of the borrower, as follows:

$$Spread_{iabt}^{r} = \gamma_0 + \gamma_1 \kappa_{iabt} + \gamma_2 X_{iabt} + \upsilon_{iabt}, \tag{8}$$

where i indexes the facility, a the lead arranger, b the potential syndicate member. The term κ_{iabt} is the weight that the lead arranger a puts on the profit of each potential syndicate member b in facility i arranged in quarter t, as defined in Equation (1). Finally, X_{iabt} is a vector of controls including characteristics of: (i) the potential member; (ii) the lead arranger; (iii) the loan and the facility; and (iv) the borrower. As above, we omit the subscript for the borrowing firm to simplify the notation.

If the actual interest rate offered to the potential members is below the reservation interest rate, $Spread_{iabt}^r$, the potential member does not participate in the syndicate. The participation decision of a potential member bank (p_{iabt}) is therefore:

$$p_{iabt} = 1 \text{ if } Spread_{iat} - Spread_{iabt}^r > 0$$

= 0 if $Spread_{iat} - Spread_{iabt}^r \le 0$.

Using a slightly different version of the definition of $Spread_{iat}$ in Equation (4), the

inequality can be expressed as follows:

$$p_{iabt}^{*} = (\beta_{0} - \gamma_{0}) + (\beta_{1}\kappa_{iabt} - \gamma_{1}\kappa_{iabt}) + (\beta_{2}X_{iat} - \gamma_{2}X_{iabt}) + (\varepsilon_{iabt} - \upsilon_{iabt})$$
$$= \delta_{0} + \delta_{1}\kappa_{iabt} + \delta_{2}X_{iabt} + \eta_{iabt}.$$

The participation equation is therefore:

$$p_{iabt} = 1[\delta_0 + \delta_1 \kappa_{iabt} + \delta_2 X_{iabt} + \eta_{iabt} > 0]. \tag{9}$$

The resulting outcome equation is:

$$Spread_{iat} = \beta_0 + \beta_1 \kappa_{iabt} + \beta_2 X_{iat} + \varepsilon_{iabt} \text{ if } p_{iabt}^* > 0$$

$$= \text{ not observed if } p_{iabt}^* \le 0, \tag{10}$$

where we modify Equation (4) to use a more granular unit of observation at memberfacility level rather than facility level as in the main specification.¹⁹ Clearly, the error term η_{iabt} involves the unobserved determinants influencing the interest rate offered to the members ε_{iabt} . To account for the correlation between unobservable drivers of participation and the resulting interest rate offered to the syndicate members, we assume a joint normal distribution for the two error terms:

$$\begin{pmatrix} \eta_{iabt} \\ \varepsilon_{iabt} \end{pmatrix} \sim N \left(0, \begin{pmatrix} 1 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \right).$$

We estimate the model using the standard Heckman two-step procedure. The joint normality of the errors implies that the error in the pricing equation, ε_{iabt} , is a multiple of the error in the participation decision equation (σ_{12}) plus some noise that is independent of the participation decision equation.

While the sample selection model is theoretically identified without any restriction on the regressors (through nonlinearities), we use exclusion restrictions to identify the parameters through variation in the data rather than parametric assumptions. The following variables should impact participation, and affect the resulting prices only indirectly through participation: (i) a measure of multimarket contact between the lead bank and

The dependent variable, $Spread_{iat}$, is set at facility level and does not vary across members of the same facility.

the potential members defined as the overlap of bank deposits across markets (U.S. counties) weighted by market concentration, calculated according to Equation (6) of Hatfield and Wallen (2022); and (ii) the geographical distance between the potential member and the lead bank.

Hatfield and Wallen (2022) show that their measure of multimarket contact directly influences the propensity to co-syndicate; in particular, the propensity to co-syndicate is increasing in the degree of deposit market multimarket contact. Importantly, this measure of multimarket contact does not have a mechanical relationship with bank size or geographic distance.²⁰ Mian (2006) shows how geographical and cultural distance between lenders influence their lending decision.

Interest rates are a function of various determinants linked to the lead bank, the borrower and the loan. We argue that multimarket contact between the potential member and the lead bank and their geographical distance should influence the final price only through member participation. While the validity of exclusion restrictions cannot be directly tested, we perform numerous sensitivity analyses and the results do not change. Finally, all the variables included in the outcome equation are also present in the participation equation.

Table VI presents the results without the correction for selection (column 1) and with the correction (columns 2 and 3). Results from the selection model indicate that participation is not random. Table VI presents the results using the full sample of observations. In column 2, we present the results of the participation equation. As expected, potential members with higher common ownership with the lead bank are more likely to enter the syndicate, confirming that high levels of common ownership can mitigate information asymmetries. As those potential members are more aware of investment opportunities, or hold superior information to other uninformed participants, their reservation price is lower, and they are more likely to participate in the syndicate. Other statistically important drivers of participation include the degree of multimarket contact (positive), the geographic distance between the lead and the potential member (negative), and the level of common ownership between the potential member and the borrower (positive).

We find evidence of selection, with a significant sample selection term, λ , and an implied correlation coefficient of 0.74. We have unobserved attributes that positively affect both the probability of participating in the syndicate and the prices offered to the syndicate members. These results do not appear to be different from those without

²⁰To calculate the measure of multimarket contact, we use publicly available information from the annual survey of branch office deposits conducted by the Federal Deposit Insurance Corporation.

correction, especially with regard to the impact of common ownership on prices; the standardized coefficient is similar in magnitude to the one presented in Section 5. We conclude that common ownership increases the demand for loans, which would per se reduce the spread through the book-building process. However, even after accounting for selection, common ownership reduces the loan spread, which is an effect that we attribute to the role of common ownership in mitigating information asymmetries between the lead arranger and members.

7 Additional Results

Our findings are consistent with the predictions of the theoretical model in Section 3. In this section, we conduct additional tests whose results confirm our theory.

7.1 New Versus Repeated Borrowers

In our analysis, we have so far considered the overall effect of common ownership on the financing terms of syndicated loans. We expect that the role of common ownership will be stronger when information asymmetries are pronounced. Following Sufi (2007), we consider the reputation of borrowers, measured by their past access to the loan market, as a proxy of heterogeneity in information asymmetry between the informed lead arranger and the uninformed syndicate members.

Table VII reports the results of regressing the all-in-drawn spread against the common ownership measure for the subsamples of new borrowers and repeated borrowers. We find that common ownership matters only for borrowers whose reputation is less established. Those borrowers have practically no history in the loan market; thus, the lead arranger carrying out the due diligence will be more likely to hold an informational advantage over the uninformed syndicate participants. For borrowers forming new relationships with the lead arrangers in the market, we find statistically significant decreases in quintiles 3 to 5. Within a quintile, an increase in common ownership from the minimum to the maximum level implies a reduction in spread corresponding to 13.2 basis points in quintile 4, and 17.4 basis points in quintile 5. In contrast, common ownership does not appear to impact the spread of repeated borrowers.

7.2 Falsification Test: Common Ownership Member-Lead

We now present the results of a falsification test that leverage the testable implications of our hypothesis of common ownership as a mechanism of information transmission from the lead to the member banks. The falsification test exploits the asymmetry in our measure of common ownership between pairs of banks; that is, lead-member κ_{ab_i} , and member-lead κ_{b_ia} . As discussed in Backus et al. (2021b), any difference in the value of these two measures is driven by differences in relative investor concentration.²¹ Such asymmetry is a feature of our common ownership measure and results in the following testable implication: since only the lead arranger holds superior information on the borrower, the level of common ownership from the syndicate member to the lead arranger (κ_{b_ia}) should not impact the lending conditions once we control for the weight that the lead arranger puts on the profit of the syndicate member (κ_{ab_i}).

This test allows us to conclude that pipeline risk is unlikely to explain our results. In the demand-discovery model of Bruche et al. (2020), it is the market that holds superior information. Thus, if common ownership mitigates pipeline risk through the transmission of information from the investors to the lead bank on the demand state, then the falsification test we propose here should give the same results as in our main analysis.

We estimate Equation (4) and Equation (6) by regressing both the all-in-drawn spread and the amount of loan retained by the lead on our measure of average common ownership between the lead arranger and syndicate members in a facility (CO_{ia}) , as before, and a measure of the average common ownership between syndicate members and the lead arranger in a facility (CO_{ib}) . The expectation is that adding CO_{ib} should not impact the lending conditions. Table VIII shows the results: in all specifications, the magnitude of the coefficient of common ownership lead-member (CO_{ia}) is practically unchanged. Most importantly, the coefficient of common ownership member-lead (CO_{ib}) is small in magnitude and not statistically different from zero.²²

²¹In the Internet Appendix (Appendix B), we provide a decomposition of the profit weights member-lead into cosine similarity and relative lender concentration: see Equation (3). Figure B.1 shows the results. Panel (a) shows that the cosine similarity member-lead is identical to the lead-member, as reported in Figure 2. Panel (b) depicts the relative concentration of lenders in the measure of common ownership member-lead, which differs from Panel (c) of Figure 2.

²²Use only the cosine component of CO_{ib} delivers the same results. We prefer using CO_{ib} as the cosine component and the relative investor concentration component are interacted.

8 Conclusion

We study the impact of common ownership in the syndicated loan market, focusing on the connection between the lead bank and the syndicate members. Our novel hypothesis is that high levels of common ownership facilitate the transmission of private information on the borrowing firms between the lead bank and other members of the syndicate. Common ownership is therefore a tool to ease information asymmetries.

We propose a signaling model in which a lead bank detains private information on the riskiness of a project while seeking funding to finance it. Signaling is costly in that it requires a larger commitment of funds by the lead bank. We conjecture that common ownership allows the lead bank to credibly transmit information about the borrower, and solve the model accordingly. The model provides three empirical predictions. At higher levels of common ownership: (i) the interest rate paid to the syndicate members is lower; (ii) the lead bank retains lower funds; and (iii) we observe less rationing at the issuance.

We use data on the syndicated loan market to empirically verify these predictions and find empirical support for all of them. Our identification strategy leverages the cross-sectional variation in the level of common ownership arising from differences in the composition of the syndicate both across facilities within a loan and across loans. An increase of one standard deviation in common ownership between the lead arranger and members of the syndicate is associated with a decrease equal to 5 basis points in interest rates (the average spread is 171 basis points) and 0.4 percentage points in the amount retained by the lead (the lead arranger retains on average 14% of the loan amount). Lead arrangers with a prevalence of high common ownership in their portfolio experience stronger lending relationship. They underwrite 13% more loans in a quarter with respect to lead arrangers with a low prevalence, and 44% more in terms of the amount. These results are robust to a variety of robustness and falsification tests.

Regulators recognize that common ownership can be conducive to the transmission of information about the borrower. We provide empirical evidence consistent with the presence of this flow of information and quantify the impact of common ownership on the contractual terms of the loan.

References

- Antón, M., Ederer, F., Giné, M., and Schmalz, M. C. (2023). Common Ownership, Competition, and Top Management Incentives. *Journal of Political Economy*, 131(5).
- Antón, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099–1127.
- Appel, I. R., Gormley, T. A., and Keim, D. B. (2016). Passive investors, not passive owners. *Journal of Financial Economics*, 121(1):111–141.
- Aslan, H. (2019). Common ownership, creative destruction, and inequality: Evidence from U.S. consumers.
- Azar, J. (2021). Common shareholders and interlocking directors: The relation between two corporate networks. *Journal of Competition Law and Economics*, 18(1):75–98.
- Azar, J., Raina, S., and Schmalz, M. (2022). Ultimate ownership and bank competition. *Financial Management*, 51(1):227–269.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive Effects of Common Ownership. *The Journal of Finance*, 73(4):1513–1565.
- Backus, M., Conlon, C., and Sinkinson, M. (2020). Theory and measurement of common ownership. *AEA Papers and Proceedings*, 110:557–60.
- Backus, M., Conlon, C., and Sinkinson, M. (2021a). Common ownership and competition in the ready-to-eat cereal industry. Working Paper 28350, National Bureau of Economic Research.
- Backus, M., Conlon, C., and Sinkinson, M. (2021b). Common ownership in America: 1980–2017. American Economic Journal: Microeconomics, 13(3):273–308.
- Becker, B. and Ivashina, V. (2016). Covenant-light contracts and creditor coordination. Riksbank Research Paper Series, (149).
- Ben-David, I., Franzoni, F., Moussawi, R., and Sedunov, J. (2021). The granular nature of large institutional investors. *Management Science*, 67(11):6629–6659.
- Berg, T., Saunders, A., and Steffen, S. (2016). The Total Cost of Corporate Borrowing in the Loan Market: Don't Ignore the Fees. *The Journal of Finance*, 71(3):1357–1392.

- Berlin, M., Nini, G., and Edison, G. Y. (2020). Concentration of control rights in leveraged loan syndicates. *Journal of Financial Economics*, 137(1):249–271.
- Bharath, S. T. and Shumway, T. (2008). Forecasting default with the merton distance to default model. *The Review of Financial Studies*, 21(3):1339–1369.
- Blickle, K., Fleckenstein, Q., Hillenbrand, S., and Saunders, A. (2020). The myth of the lead arranger's share. FRB of New York Staff Report, (922).
- Boller, L. and Scott Morton, F. (2020). Testing the theory of common stock ownership. Working Paper 27515, National Bureau of Economic Research.
- Bord, V. and Santos, J. A. (2012). The rise of the originate-to-distribute model and the role of banks in financial intermediation. *Economic Policy Review*, 18(2):21–34.
- Brav, A., Jiang, W., Li, T., and Pinnington, J. (2019). Picking Friends Before Picking (Proxy) Fights: How Mutual Fund Voting Shapes Proxy Contests.
- Bruche, M., Malherbe, F., and Meisenzahl, R. R. (2020). Pipeline Risk in Leveraged Loan Syndication. *The Review of Financial Studies*, 33(12):5660–5705.
- Cai, J. (2010). Competition or collaboration? the reciprocity effect in loan syndication. Technical report.
- Cai, J., Eidam, F., Saunders, A., and Steffen, S. (2018). Syndication, interconnectedness, and systemic risk. *Journal of Financial Stability*, 34:105–120.
- Callaway, B. and Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics*, 225(2):200–230.
- Chava, S. and Roberts, M. R. (2008). How Does Financing Impact Investment? The Role of Debt Covenants. *The Journal of Finance*, 63(5):2085–2121.
- Cici, G., Gibson, S., and Rosenfeld, C. M. (2015). Cross-company effects of common ownership: Dealings between borrowers and lenders with a common blockholder.
- Degryse, H., Jonghe, O. D., Jakovljević, S., Mulier, K., and Schepens, G. (2019). Identifying credit supply shocks with bank-firm data: Methods and applications. *Journal of Financial Intermediation*, 40:100813.

- Dennis, S., Nandy, D., and Sharpe, I. G. (2000). The determinants of contract terms in bank revolving credit agreements. *The Journal of Financial and Quantitative Analysis*, 35(1):87–110.
- Drucker, S. and Puri, M. (2009). On loan sales, loan contracting, and lending relationships. *The Review of Financial Studies*, 22(7):2835–2872.
- Edmans, A., Levit, D., and Reilly, D. (2019). Governance Under Common Ownership. The Review of Financial Studies, 32(7):2673–2719.
- Eldar, O., Nili, Y., and Pinnington, J. (2023). Common Ownership Directors.
- European Commission (2019). EU loan syndication on competition and its impact in credit markets. The European Commission.
- Ferreira, M. A. and Matos, P. (2012). Universal banks and corporate control: Evidence from the global syndicated loan market. *Review of Financial Studies*, 25(9):2703–2744.
- Focarelli, D., Pozzolo, A. F., and Casolaro, L. (2008). The pricing effect of certification on syndicated loans. *Journal of Monetary Economics*, 55(2):335–349.
- Gao, J., Kleiner, K., and Pacelli, J. (2020). Credit and punishment: Are corporate bankers disciplined for risk-taking? *The Review of Financial Studies*, 33(12):5706–5749.
- Gilje, E., Gormley, T. A., and Levit, D. (2020). Who's Paying Attention? Measuring Common Ownership and Its Impact on Managerial Incentives. *Journal of Financial Economics*, 137(1):152–178.
- Hatfield, J. and Wallen, J. (2022). Many markets make good neighbors: Multimarket contact and deposit banking. Technical report, Harvard Business School Working Paper.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.
- He, J. J. and Huang, J. (2017). Product Market Competition in a World of Cross-Ownership: Evidence from Institutional Blockholdings. *The Review of Financial Studies*, 30(8):2674–2718.
- Hilscher, J. and Şişli-Ciamarra, E. (2013). Conflicts of interest on corporate boards: The effect of creditor-directors on acquisitions. *Journal of Corporate Finance*, 19:140–158.

- Huang, Q., Jiang, F., Lie, E., and Yang, K. (2014). The role of investment banker directors in m&a. *Journal of Financial Economics*, 112(2):269–286.
- Imbens, G. and Wooldridge, J. (2007). "What's New in Econometrics" Lecture 5. NBER.
- Imbens, G. W. and Wooldridge, J. M. (2009). Recent developments in the econometrics of program evaluation. *Journal of economic literature*, 47(1):5–86.
- Ivashina, V. (2005). Structure and pricing of syndicate loans.
- Ivashina, V. (2009). Asymmetric information effects on loan spreads. *Journal of Financial Economics*, 92(2):300–319.
- Ivashina, V. and Sun, Z. (2011). Institutional demand pressure and the cost of corporate loans. *Journal of Financial Economics*, 99(3):500–522.
- Jagannathan, M., Jiao, W., and Krishnamurthy, S. (2020). Missing them yet? investment banker directors in the 21st century. *Journal of Corporate Finance*, 60:101512.
- Jiang, W., Li, K., and Shao, P. (2010). When shareholders are creditors: Effects of the simultaneous holding of equity and debt by non-commercial banking institutions. *Review of Financial Studies*, 23(10):3595–3637.
- Kroszner, R. S. and Strahan, P. E. (2001). Bankers on boards: Monitoring, conflicts of interest, and lender liability. *Journal of Financial Economics*, 62(3):415–452.
- Lewellen, K. and Lowry, M. (2021). Does common ownership really increase firm coordination? *Journal of Financial Economics*, 141(1):322–344.
- Lim, J., Minton, B. A., and Weisbach, M. S. (2014). Syndicated loan spreads and the composition of the syndicate. *Journal of Financial Economics*, 111(1):45–69.
- Lin, C., Ma, Y., Malatesta, P., and Xuan, Y. (2012). Corporate ownership structure and bank loan syndicate structure. *Journal of Financial Economics*, 104(1):1–22.
- Maskin, E. and Tirole, J. (1990). The principal-agent relationship with an informed principal: The case of private values. *Econometrica*, 58(2):379–409.
- Massa, M. and Rehman, Z. (2008). Information flows within financial conglomerates: Evidence from the banks–mutual funds relation. *Journal of Financial Economics*, 89(2):288–306.

- Matvos, G. and Ostrovsky, M. (2008). Cross-ownership, returns, and voting in mergers. Journal of Financial Economics, 89(3):391–403.
- Mian, A. (2006). Distance constraints: The limits of foreign lending in poor economies. *The Journal of Finance*, 61(3):1465–1505.
- Newham, M., Seldeslachts, J., and Banal Estaaol, A. (2022). Common Ownership and Market Entry: Evidence from Pharmaceutical Industry.
- Nili, Y. (2020). Horizontal directors, 114 nw. UL Rev, 1179.
- O'Brien, D. P. and Salop, S. C. (2000). Competitive effects of partial ownership: Financial interest and corporate control. *Antitrust Law Journal*, 67(3):559–614.
- Ojeda, W. (2019). Common ownership in the loan market. *University of California*, *Berkeley*.
- Roberts, M. R. and Schwert, M. (2020). Interest rates and the design of financial contracts. Technical report, National Bureau of Economic Research.
- Rotemberg, J. J. (1984). Financial transaction costs and industrial performance. Technical Report 1554-84, MIT.
- Rothschild, M. and Stiglitz, J. E. (1976). Equilibrium in competitive insurance markets: an essay in the economics of imperfect information. *Quarterly Journal of Economics*, 90:629–650.
- Ruiz-Pérez, A. (2019). Market structure and common ownership: Evidence from the us airline industry.
- Saidi, F. and Streitz, D. (2021). Bank concentration and product market competition. *The Review of Financial Studies*, 34(10):4999–5035.
- Sant'Anna, P. H. and Zhao, J. (2020). Doubly robust difference-in-differences estimators. Journal of Econometrics, 219(1):101–122.
- Santos, J. A. and Rumble, A. S. (2006). The american keiretsu and universal banks: Investing, voting and sitting on nonfinancials' corporate boards. *Journal of Financial Economics*, 80(2):419–454.

- Schmalz, M. C. (2021). Recent studies on common ownership, firm behavior, and market outcomes. *The Antitrust Bulletin*, 66(1):12–38.
- Schwartz-Ziv, M. and Volkova, E. (2020). Is blockholder diversity detrimental?
- Schwert, M. (2018). Bank Capital and Lending Relationships. *The Journal of Finance*, 73(2):787–830.
- Shekita, N. (2021). Interventions by common owners. Journal of Competition Law \mathcal{E} Economics.
- Sufi, A. (2007). Information Asymmetry and Financing Arrangements: Evidence from Syndicated Loans. *The Journal of Finance*, 62(2):629–668.
- Tirole, J. (2006). The Theory of Corporate Finance. Princeton University Press.
- Wang, J. and Wang, L. (2019). Borrower-lender cross-ownership and costs of borrowing.
- Wilson, C. (1977). A model of insurance markets with incomplete information. *Journal of Economic Theory*, 16(2):167–207.
- Xie, J. (2021). Horizontal shareholdings and paragraph IV generic entry in the U.S. pharmaceutical industry. *The Antitrust Bulletin*, 66(1):100–112.

Tables and Figures

Table I: Summary statistics

	Mean	Std.Dev	p25	p50	p75	Obs.				
Facility Variables										
All-in-Drawn Spread	187.688	120.558	100.000	175.000	250.000	38389				
CO	0.711	0.191	0.610	0.755	0.840	38523				
CO Member-Borrower	0.399	0.358	0.000	0.415	0.729	38471				
Facility Amount \$M	617.160	1176.731	125.000	300.000	700.000	38523				
Lead Amount	19.327	15.115	9.140	14.000	25.000	12165				
# Facilities within Loan	1.855	1.063	1.000	2.000	2.000	38523				
Log Maturity	3.827	0.594	3.638	4.094	4.094	37847				
Secured Loan	0.490	0.500	0.000	0.000	1.000	38523				
Refinancing	0.693	0.461	0.000	1.000	1.000	38523				
Log Number of Members	2.101	0.713	1.609	2.079	2.565	38523				
Guarantor	0.100	0.301	0.000	0.000	0.000	38523				
Relationship Score	0.038	0.019	0.030	0.036	0.044	38523				
Reciprocity	0.278	0.400	0.078	0.186	0.377	38468				
New Lending Relation	0.519	0.500	0.000	1.000	1.000	38523				
LIBOR 3M	0.025	0.023	0.003	0.013	0.051	38523				
Non-Bank Synd. Member	0.224	0.417	0.000	0.000	0.000	38523				
Prob. Default	0.033	0.136	0.000	0.000	0.000	31273				
Stock Volatility	0.395	0.201	0.263	0.349	0.466	32544				
Credit Line	0.675	0.468	0.000	1.000	1.000	38523				
Term Loan	0.325	0.468	0.000	0.000	1.000	38523				
	Borrou	ver-Year Va	iriables							
Size	7.346	1.637	6.218	7.261	8.398	15401				
ROA	0.072	2.426	0.054	0.089	0.130	15375				
Book Leverage	0.332	0.971	0.168	0.291	0.435	15358				
Tangibilities	0.319	0.240	0.128	0.254	0.463	15351				
Tobin's Q	1.860	6.127	1.183	1.499	2.019	13740				
Log Int. Cov.	2.260	1.124	1.506	2.076	2.765	14001				
Liquidity Ratio	0.066	0.082	0.013	0.036	0.089	15194				
Unrated Borrower	0.455	0.498	0.000	0.000	1.000	15634				
High Yield	0.268	0.443	0.000	0.000	1.000	15634				
Investment Grade	0.277	0.448	0.000	0.000	1.000	15634				
	Lead	-Year Vari	ables							
Lead Size	11.704	1.396	10.789	11.556	12.581	669				
Lead Market Equity	0.139	0.082	0.085	0.127	0.174	669				
Bank Book Equity	0.080	0.027	0.064	0.080	0.095	669				
Lead Book Leverage	0.246	0.161	0.139	0.213	0.290	666				
Lead ROA	0.010	0.007	0.007	0.011	0.013	669				

The table reports summary statistics of the main variables in our sample related to (i) facilities and loans; (ii) borrowers; (iii) lead banks. CO denotes common ownership. All variables are defined in Table B.II in the Internet Appendix.

Table II: Board connections and common ownership

	(1) Connect (0/1)	(2) Connect (0/1)	(3) Connect Total	(4) Connect Total
	0.04.0444	0.0044**	0 = 0.1 ***	0.000**
CO	0.218***	0.0611**	0.764***	0.282**
D'	(6.67)	(2.21)	(4.74)	(2.47)
Distance Lead-Member		-0.199***		-0.618***
D 1 1. I 1 M 1		(-5.41)		(-4.48)
Relationship Lead-Member		0.259***		1.047***
T 1.0		(6.49)		(5.54)
Lead Size		0.0778***		0.327***
		(7.66)		(7.16)
Lead Market Equity		-0.251**		-0.677*
		(-2.20)		(-1.66)
Lead Book Leverage		-0.0724		-0.371**
		(-1.46)		(-2.17)
Lead ROA		-0.578		-6.792
		(-0.58)		(-1.50)
Member Size		0.0776^{***}		0.254^{***}
		(6.93)		(6.11)
Member Market Equity		-0.140		-0.451
		(-1.47)		(-1.29)
Member Book Leverage		-0.0603		-0.222
		(-1.24)		(-1.44)
Member ROA		-1.058		-6.707*
		(-1.24)		(-1.76)
Member S&P 500		-0.0265		-0.225***
		(-1.18)		(-2.91)
Member Top 4		0.0260		0.330^{*}
		(0.68)		(1.85)
Year FE	No	Yes	No	Yes
Observations	10405	10126	10405	10126
Adjusted R-squared	0.0196	0.168	0.0177	0.187

The table reports the OLS regression parameter estimates and t-statistics. The dependent variable is as an indicator equal to one if a pair of banks have a board connection. The coefficient of interest is the one of CO, a measure of common ownership between each lead-member pair. Distance Lead-Member is the portfolio distance between the lead bank and the syndicate participant in the previous four quarters, Relationship Lead-Member is the number of loans arranged by the lead bank where the member bank participated in the previous four quarters divided by the number of loans arranged by the lead bank in the previous four quarters. Standard errors are clustered by lead-member bank pairs. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table III: Interest rates

	Full S	ample		ility Type- e Loan
	(1)	(2)	(3)	(4)
СО	-27.64*** (-4.06)		-48.03*** (-3.57)	
CO Quintile 2	()	-2.943	(3.31)	-2.557
CO Quintile 3		(-0.80) -9.126** (-2.16)		(-0.29) -22.91*** (-2.75)
CO Quintile 4		-11.07***		-28.19*** (-4.19)
CO Quintile 5		(-3.09) -16.15*** (-3.76)		-24.94*** (-3.23)
Facility Type FE	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes
Year-Quarter FE	No	No	Yes	Yes
Lead FE	Yes	Yes	Yes	Yes
Borrower FE	Yes	Yes	No	No
$SIC2 \times Year$ -Quarter FE	Yes	Yes	No	No
Observations Adjusted R-squared	25439 0.790	25439 0.790	1430 0.729	1430 0.731

The table reports the OLS regression parameter estimates and t-statistics of Equation (4). The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). The specification also controls for facility-loan, lender, and borrower characteristics. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table IV: Facility amount retained by the lead bank

	(1) Lead Amount Dealscan	(2) Exclude Term B And Leveraged	(3) Lead Amount Approximated
			P P
CO	-3.190***	-3.744**	-2.018*
	(-3.08)	(-2.08)	(-1.79)
Facility Type FE	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes
Lead FE	Yes	Yes	Yes
Borrower FE	No	No	Yes
$SIC2 \times Year$ -Quarter FE	Yes	Yes	Yes
Observations	8095	2753	24151
Adjusted R-squared	0.743	0.807	0.697

The table reports the OLS regression parameter estimates and t-statistics of Equation (6). The dependent variable is the percentage facility amount retained by each lead bank in the syndicate. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). The specification also controls for facility-loan, lender, and borrower characteristics. Column (1) reports the baseline result. Column (2) excludes Term B and Leveraged loans. Column (3) contains the baseline results using the amount retained by the lead arranger computed following Blickle et al. (2020)'s approximation method. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table V: Rationing

	CO Threshole	d [0.4,0.6];(0.6,max(CO)]	CO Threshol	ld [0,0.5];(0.5,max(CO)]
	(1) # Loans	(2) Amount Lent	(3) # Loans	(4) Amount Lent
CO High Lead	0.174**	495.7***	0.158***	279.8***
Lead Size	(2.14) $1.074***$	(4.65) 1182.9***	(3.60) 0.643***	(4.33) 526.7^{***}
Lead Market Equity	(18.96) -6.257*** (-6.39)	(14.63) -6345.1*** (-3.84)	(9.59) -0.0966 (-0.26)	(7.18) 581.2 (1.48)
Lead Book Leverage	-4.666*** (-11.38)	-3013.7*** (-6.08)	-0.316* (-1.87)	292.5 (1.21)
Lead ROA	2.224 (0.27)	-9837.8 (-0.73)	-4.983* (-1.75)	-11319.3*** (-2.81)
Year-Quarter FE Lead FE	Yes No	Yes No	Yes Yes	Yes Yes
Observations Adjusted R-squared	477 0.690	477 0.681	1866 0.769	1866 0.663

The table reports the OLS regression parameter estimates and t-statistics of Equation (7). The dependent variable is the number of loans (odd columns) and the dollar amount (even columns) underwritten by a lead bank in a quarter, normalized by the lead bank size. The coefficient of interest is the one of CO High Lead, an indicator variable taking the value of one for lead arrangers with prevalence of high common ownership in their portfolio and zero otherwise. The specification also controls for lead bank characteristics and year-quarter fixed effects. Standard errors are clustered by year-quarter. All variables are defined in Table B.II in the Internet Appendix. ***, ***, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table VI: Interest rates: selection into the syndicate

	No Selection	Heckman	Selection
	(1) Spread	(2) Member	(3) Spread
СО	-10.706*** (-4.035)	0.318*** (5.670)	-8.602*** (-6.343)
MMC	(-4.033)	(5.670) $2.564***$	(-0.343)
MMC > 0		(3.592) -0.153***	
log(distance)		(-3.561) -0.040***	
λ		(-5.465)	43.890***
Loan Purpose FE	Yes	Yes	(11.207) Yes
Facility Type FE	Yes	Yes	Yes
Year-Quarter FE	Yes	Yes	Yes
SIC2 FE	Yes	Yes	Yes
Member FE	Yes	Yes	Yes
Observations	75,454	72,101	72,101

The table reports the the regression parameter estimates and t-statistics of a one-step OLS estimation of Equation (10) (Column 1) and a two-step estimation of Equation (9) and Equation (10) accounting for sample selection (Columns 2-3). The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of CO, a measure of common ownership between the lead and potential member banks given in Equation (1). The specification also controls for facility-loan, syndicate member bank, and borrower characteristics. Standard errors are clustered by member bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table VII: Interest rates and common ownership - new versus repeated borrowers

	(1)	(2)	(3)	(4)
	New B	orrower	Repeated	d Borrower
GO.	20 20***		0.400	
CO	-29.28***		-6.489	
00.0:41.2	(-3.11)	4.000	(-0.91)	1 001
CO Quintile 2		-4.868		-1.861
		(-1.22)		(-0.49)
CO Quintile 3		-7.963*		-9.100*
		(-1.95)		(-1.74)
CO Quintile 4		-16.39***		-5.863
		(-3.57)		(-1.19)
CO Quintile 5		-19.34***		-6.334
		(-4.24)		(-1.41)
Loan Purpose FE	Yes	Yes	Yes	Yes
Facility Type FE	Yes	Yes	Yes	Yes
Lead FE	Yes	Yes	Yes	Yes
$SIC2 \times Year$ -Quarter FE	Yes	Yes	Yes	Yes
·				
Observations	12664	12664	12645	12645
Adjusted R-squared	0.730	0.730	0.743	0.744

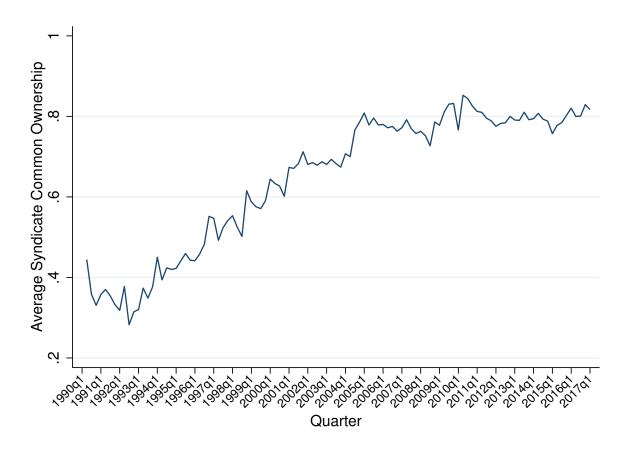

The table reports the OLS regression parameter estimates and t-statistics of Equation (4). The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). Column (1) and (2) contain loans issued to new borrowers. Column (3) and (4) report the effect of syndicate common ownership on facility spreads for repeated lending relations. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, ***, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table VIII: Falsification test: common ownership member-lead and lead-member

	(1)	(2)	(3)	(4)
	Spread	Spread	Lead Amount Approximated	Lead Amount Imputed
CO Member-Lead	-6.212	6.031	-0.981	-0.438
CO Wellber Lead	(-0.74)	(0.77)	(-0.80)	(-0.38)
CO	-27.64***	(0.11)	-1.917*	(0.00)
	(-4.03)		(-1.70)	
CO Quintile 2	(2.00)	-4.416	(2 0)	-1.679***
		(-1.06)		(-3.68)
CO Quintile 3		-10.98**		-1.995***
·		(-2.28)		(-3.48)
CO Quintile 4		-13.47***		-2.528***
·		(-3.27)		(-4.22)
CO Quintile 5		-16.24***		-1.422**
		(-3.25)		(-2.39)
Loan Purpose FE	Yes	Yes	Yes	Yes
Facility Type FE	Yes	Yes	Yes	Yes
Lead FE	Yes	Yes	Yes	Yes
Borrower FE	Yes	Yes	No	No
SIC2 times Year-Quarter FE	Yes	Yes	Yes	Yes
Observations	25394	25394	24113	24035
Adjusted R-squared	0.791	0.786	0.695	0.699

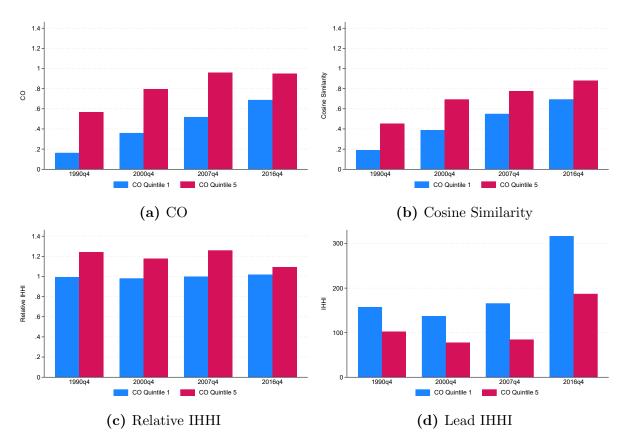
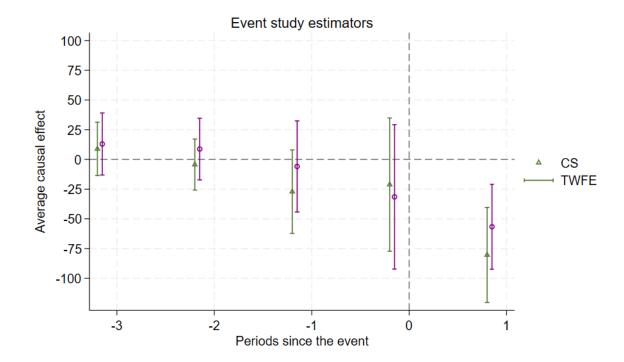

The table reports the OLS regression parameter estimates and t-statistics of Equation (4) in Column (1) and (2) and Equation (6) in Column (3) and (4). The dependent variable is facility loan spread (Columns 1 and 2) and the percentage of loan retained calculated according to Blickle et al. (2020)'s approximation method (Columns 3 and 4). The coefficient of interest is the one on *CO Member-Lead*, a measure of common ownership between the member and the lead in the same facility. The specification also controls for facility-loan, lender, and borrower characteristics. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Figure 1: Average common ownership in the syndicated loan industry over time


This figure reports the average common ownership among banks in the same syndicate between 1990 and 2017q1 at a quarterly frequency. Common Ownership is defined as the average profit weights between the syndicate lead-arranger(s) and the syndicate members.

The figure reports the average values of syndicate common ownership (a) and its decomposition (b) and (c) for the highest and lowest quintile of the common ownership distribution over time. Syndicate common ownership (CO) is defined in Equation 2 and the decomposition in Equation 3. Panel (d) reports the average shareholders' concentration of lead banks (Lead IHHI) for the highest and lowest quintile of the common ownership distribution over time.

Figure 3: Dynamic treatment effects of BlackRock-BGI acquisition on interest rates

This figure reports the dynamics in the effect of average interest rate of the BlackRock-BGI acquisition; this is the difference-in-difference event study of Equation (5). The BlackRock-BGI acquisition treatment indicator is interacted with year fixed effects. We normalize the interaction for 4 quarters before the treatment to zero. The dynamic estimates are drawn from the dynamic Callaway and Sant'Anna (2021) specification (CO) and from a two-way-fixed effects specification (TWFE). We plot the coefficient estimates together with the 95% confidence intervals depicted by the vertical bars. Standard errors are clustered at the lead-arranger level.

Internet Appendix

Appendix A

In this section, we present the formal details of the model and solve the results we present in Section 3.

Recall that the economy is populated by a penniless borrower that owns a project but lacks financial resources to carry it out. The borrower delegates the lead bank (L) to form a syndicate for a loan of size 1; it then shares with the lead bank the returns of the investment. A continuum of potential members of the syndicate (M) operate in perfectly competitive financial markets and have the financial resources to fund the project. A, with 0 < A < 1, is the maximum amount of the loan that the lead bank can pledge.

The borrower's project can be one of two types. The good type (G) has a probability of success equal to p. The bad type (B) has a probability of success q < p. Independently of the type, the project yields R in the case of success and 0 in the case of failure. The lead bank knows the type of the borrower's project. We denote by α and $(1 - \alpha)$ the potential syndicate members' prior probabilities that the borrower's project is of type G and type B, respectively.

We make the following parametric assumptions.

Assumption 1.

$$pR > 1 > 1 - A > qR,$$
 (A.1)

$$qR - A > \frac{q}{p} \left(\frac{1 - \kappa \theta qR}{1 - \kappa \theta} \right). \tag{A.2}$$

In Assumption 1.(A.1), pR > 1 implies that the good borrower's project has a positive net present value (NPV). 1-A > qR means that the bad borrower's project has a negative NPV despite the use of the lead bank's funds A. At the right-hand side of the condition in Assumption 1.(A.2), parameter $\kappa \in [0,1]$ captures the weight that the lead bank attaches to the utility of the fraction $\theta \in (0,1)$ of commonly owned syndicate members. At the left-hand side, qR - A is the project return of a lead bank representing a bad type (qR), net of the "inside liquidity" A. The condition implies that the value of such net utility is large, which, as we will see, makes signaling the good type particularly costly for the lead bank. Taken together, Assumptions 1.(A.1) and 1.(A.2) imply that 0 < A < 1/2 and an upper bound on θ . Both are satisfied in our data.

All agents are risk neutral, the lead bank is protected by limited liability, and the riskfree interest rate is nil. The contract we consider is $(x_j, R_{j,L}^s, R_{j,L}^f, R_{j,M}^s, R_{j,M}^f, \mathcal{A}_j)$, with $j \in \{G, B\}$. We denote by $x_j \in [0, 1]$ the decision on whether a lead bank representing a borrower of type j receives funding by the potential syndicate members. The share of the returns on a project of type j = G, B received by i = L, M in the case of success (s) is $R_{j,i}^s$, it is $R_{j,i}^f$ in the case of failure (f). We assume for simplicity that $R_{j,L}^f = 0$; $R_{j,M}^f = 0$ follows from limited liability. Finally, $A_j \leq A$ is the amount of cash invested by L in the loan. Suppressing the notation for success, the contract can be rewritten as $(x_j, R_{j,L}, R_{j,M}, A_j)$, with $j \in \{G, B\}$.²³

L holds all the bargaining power. It designs contracts that can be accepted or rejected by M. When indifferent, L will prefer not to commit any cash in the loan (i.e., $A_j = 0$). We will analyze the perfect Bayesian equilibrium of the contract design game. We use $\kappa \in [0,1]$ to denote the level of common ownership between the lead bank and the syndicate member, where κ is the weight that the lead bank L places on the utility of the commonly owned syndicate members. Similarly to Antón et al. (2023), we restrict κ within values in the unit interval. However, values of κ larger than one are empirically possible: they correspond to situations in which the lead bank places more weight on the utility of the commonly owned syndicate members than on its own utility. As a consequence, the lead bank would have the incentive to transfer its funds to the syndicate members.

To begin with, we solve a funding game without common ownership ($\kappa = 0$). We then introduce common ownership. In our model, the lead bank uses common ownership to truthfully channel its private information regarding the borrower's probability of success to the commonly owned syndicate members. We derive empirical predictions on the interest rate paid to the syndicate members $(1 + r = R - R_{j,L})$ and the amount of the loan retained by the lead bank (A_j) .

Before continuing, it is important to note that, with symmetric information, the lead bank rejects the loan to the bad type $(x_B = 0)$ and grants the loan to a good type $(x_G = 1)$. Moreover, it does not pledge its funds in the loan to the good type $(\mathcal{A}_G = 0)$, and sets the reward to investors so to satisfy their break-even condition $(R_{G,M} = 1/p)$. If these symmetric-information contracts were available under asymmetric information, a lead bank representing a bad borrower mimics the good borrower and its utility would be positive (because pR - 1 > 0). However, the syndicate members would not break even in expectation.²⁴

 $^{^{23}}R_{j,L}$ is then split between the lead bank and the borrower according to a bargaining game that is outside the model.

²⁴Upon accepting, and given their priors, investors' expected utility is $\alpha p(1/p) + (1-\alpha)q(1/p) < 1$ because of Assumption 1.(A.1).

A.1 Funding Without Common Ownership

We now solve the contract design game without common ownership. As discussed in the main text, we focus on the *low-information-intensity* optimum of the contract design game (Rothschild and Stiglitz, 1976; Wilson, 1977).

Proposition 2. Without common ownership, the separating contracts offered by the lead bank are $(x_B, R_{B,L}, R_{B,M}, A_B) = (0, 0, 0, 0)$ and

$$(x_G, R_{G,L}, R_{G,M}, \mathcal{A}_G) = (1, A/q, R - A/q, A).$$

Only the lead bank representing the good borrower chooses $(x_G, R_{G,L}, R_{G,M}, A_G)$.

Proof. We solve for the separating allocation featuring a contract $c = (x_G, R_{G,L}, R_{G,M}, \mathcal{A}_G)$ for the good borrower and the symmetric information contract $\bar{c} = (x_B, R_{B,L}, R_{B,M}, \mathcal{A}_B) = (0, 0, 0, 0)$ for the bad borrower. Contract c will maximize the good borrower's utility subject to M breaking even for the good borrower and to the bad borrower not preferring c to \bar{c} . Under a condition equivalent to Assumption 1.(A.1), Tirole (2006) Lemma 6.2 proves that this separating allocation is the low-information-intensity optimum. In what follows, we construct the low-information-intensity optimum in our setting.

Contract c solves the following maximization problem:

$$\max_{\{x_G, R_{G,L}, R_{G,M}, \mathcal{A}_G\}} x_G p R_{G,L} - \mathcal{A}_G \tag{A.3}$$

subject to

$$x_G(pR_{G,M} - 1) + \mathcal{A}_G \ge 0, (A.4)$$

$$x_G q R_{G,L} - \mathcal{A}_G \le 0, \tag{A.5}$$

$$R = R_{G,L} + R_{G,M},\tag{A.6}$$

$$x_G \in [0,1], \ \mathcal{A}_G \le A. \tag{A.7}$$

Condition (A.4) is the participation constraint of the potential syndicate members; Condition (A.5) is the mimicking constraint of the lead bank representing a bad borrower.

To begin with, $x_G > 0$ as otherwise the contract would yield a zero payoff for L, despite a type-G borrower holds a positive-NPV project. Moreover, were $x_G < 1$, then increasing x_G slightly, keeping $x_G R_{G,L}$ constant, does not affect neither the maximand nor the left-hand side of Condition (A.5), but increases the left-hand side of Condition (A.4) (because pR > 1 and $R_{G,M} = R - R_{G,L}$). Then, $x_G = 1$.

Since with symmetric information the utility of the bad borrower is equal to zero, Constraint (A.5) must be binding. That is, $qR_{G,L} = \mathcal{A}_G$. Plugging $R_{G,L} = \mathcal{A}_G/q$ into Expression (A.3), we obtain:

$$\mathcal{A}_G\left(\frac{p}{q}-1\right),$$

which increases in \mathcal{A}_G ; thus, $\mathcal{A}_G = A$ (L commits its entire funds in the loan) and $R_{G,L} = A/q$.

Finally, the participation constraint of M can be rewritten as

$$pR - 1 > A\left(\frac{p}{q} - 1\right),\tag{A.8}$$

which hods true under Assumption 1.(A.2).

To sum up, without common ownership, the lead bank (L) representing a good borrower will underwrite the loan by committing $\mathcal{A}^* = \mathcal{A}_G = A$. The syndicate members (M) receives an interest rate equal to $1 + r^* = R - A/q$.

A.2 Funding with Common Ownership

Consider now the case in which the lead bank places a weight κ on the utility of the commonly owned potential syndicate members. Specifically, there is a fraction $\theta \in (0, 1)$ of commonly owned potential syndicate members (M_{Co}) and a complementary fraction $(1 - \theta)$ that are not commonly owned with the lead bank (M_{NCo}) . Any contract offered by the lead bank features the same reward to M_{Co} and M_{NCo} (so that $R_{j,M} = R_{j,M_{Co}} = R_{j,M_{NCo}}$, with j = G, B).

We equate common ownership to an information transmission device. We let the lead bank channel its private information regarding the borrower's probability of success to the commonly owned syndicate members (M_{Co}) . We say that information transmission can happen only if $\kappa \geq \underline{\kappa}$. As a consequence of information transmission, M_{Co} are perfectly informed about the type of the borrower. M_{NCo} know that the lead bank shares its private information with M_{Co} , but do not observe the type of the firm represented by the lead bank L.

The timing of the game with common ownership is as follows. Having shared with M_{Co} its information about the type of borrower it is representing, L designs the contracts to offer to investors. Subsequently, M_{Co} accept or reject. Finally, after observing M_{Co} 's

decision, it is M_{NCo} 's turn to accept or reject the contracts offered by L.²⁵ In approaching the informed potential investors first, the lead bank implements a cheaper form of signaling, through the acceptance decision of the commonly owned syndicate members instead of contract design. This timing is consistent with the institutional setting of loan syndication. Post-mandate, the lead bank informally contacts a group of potential investors to target; the lead bank first presents the loan and shares information about the loan terms and the borrower's creditworthiness to these potential investors. This process is described in Ivashina and Sun (2011) and Bruche et al. (2020).

We find the following:

Proposition 3. With common ownership, the lead bank representing a good borrower will offer the equilibrium contract with symmetric information, namely: $x_G = 1$, $R_{G,L} = R - 1/p$, $R_{G,M} = 1/p$ and $A_G = 0$. The lead bank representing a bad borrower, will never get access to funding $(x_B = 0)$.

Proof. We solve the contract design game with common ownership by assuming that L offers $c_j = (\mu_j, x_j, R_{j,L}, R_{j,M}, \mathcal{A}_j)$, with j = G, B, where μ_j denotes the probability that the commonly owned investors M_{Co} accept c_j , $x_j \in [0,1]$, $R = R_{j,L} + R_{j,M}$ and $0 \le \mathcal{A}_j \le A$. The timing of the game is:

- 1. The lead bank L formulates its offer to M_{Co} and M_{NCo} .
- 2. M_{Co} , being informed about the type of borrower represented by L, accept or reject the offer.
- 3. Conditional on observing the decision taken by M_{Co} , M_{NCo} update their priors α . We denote M_{NCo} 's posteriors by $\hat{\alpha}$; they depend on the contract offer (including the decision by M_{Co} , μ).
- 4. Given $\hat{\alpha}$, M_{NCo} decide whether to accept or reject L's offer.

We first show that any equilibrium contract must feature the acceptance decision of M_{Co} . In particular, we prove that the utility of a lead bank L representing type j increases in μ_j . Take the objective function of L:

$$\mathcal{M}_{j,L}(c_j) \equiv x_j \omega_j R_{j,L} - \mathcal{A}_j + \mu_j \theta \kappa [x_j (\omega_j R_{j,M} - 1) + \mathcal{A}_j]$$

 $^{^{25}}$ We obtain the same results if we consider a model in which L's decision to share information with M_{NCo} is an equilibrium outcome, M_{NCo} only observe L's decision to share information (not the type of the borrower), and the decision to accept the contract is taken simultaneously by M_{Co} and M_{NCo} . In this alternative model, M_{NCo} update their beliefs on the type of borrower represented by L only based on the latter's decision to share information (and the contract it designs).

where $\omega_G = p$ and $\omega_B = q$. Consider two rewards $R_{j,M}$ and $\tilde{R}_{j,M}$ such that

$$\mu_j R_{j,M} = \tilde{\mu}_j \tilde{R}_{j,M},\tag{A.9}$$

where μ_j and $\tilde{\mu}_j$ are the probabilities that M_{Co} accept when their reward is $R_{j,M}$ and $\tilde{R}_{j,M}$, respectively, with $\mu_j > \tilde{\mu}_j$ and $R_{j,M} < \tilde{R}_{j,M}$. Since $R = R_{j,L} + R_{j,M}$, setting $R_{j,M} < \tilde{R}_{j,M}$ implies that $R_{j,L} > \tilde{R}_{j,L}$. Hence,

$$\mathcal{M}_{j,L}(c_j) \ge \mathcal{M}_{j,L}(\tilde{c}_j),$$

where $\tilde{c}_j = (\tilde{\mu}_j, x_j, \tilde{R}_{j,L}, \tilde{R}_{j,M}, \mathcal{A}_j)$.

Moreover, Condition (A.9) implies that considering $R_{j,M}$ or $\tilde{R}_{j,M}$ does not affect the participation constraint of M_{Co} :

$$\mu_j \theta[x_j(\omega_j R_{j,M} - 1) + \mathcal{A}_j] \ge 0,$$

because $\mu_j \theta[x_j(\omega_j R_{j,M} - 1) + \mathcal{A}_j] = \tilde{\mu}_j \theta[x_j(\omega_j \tilde{R}_{j,M} - 1) + \mathcal{A}_j]$. All this means that a higher value of μ_j increases the utility of L and leaves the participation constraint of M_{Co} unaffected.

Consider then two candidate equilibrium contract offers such that $\mu_G = \mu_B = 1$. Specifically, we consider the symmetric-information contracts and the low-information-intensity contracts. By comparing the two, we will show that signaling via the acceptance decision of M_{Co} (as it happens under the acceptance of the symmetric-information contracts) is preferred by the lead bank L to the signaling via the contract design that takes place in the low-information-intensity contracts.

Symmetric information equilibrium contracts. Let the lead bank representing type $j \in \{B, G\}$ offer:

$$c_G^{SI} = (\mu_G, x_G, R_{G,L}, R_{G,M}, \mathcal{A}_j) = (1, 1, R - 1/p, 1/p, 0),$$

 $c_B^{SI} = (\mu_B, x_B, R_{B,L}, R_{B,M}, \mathcal{A}_j) = (1, 0, 0, 0, 0).$

Since they observe the type of the borrower, M_{Co} accept these contracts. After observing the contract offer and M_{Co} 's decision, M_{NCo} will also accept because, since $\hat{\alpha}|c_G^{SI}=1$ and

 $\hat{\alpha}|c_B^{SI}=0$, their participation constraint (PC) is always satisfied with equality:

$$PC(c_G^{SI}): (1-\theta)[x_G(pR_{G,M}-1)+\mathcal{A}_G] = 0,$$

 $PC(c_B^{SI}): (1-\theta)[x_B(qR_{B,M}-1)+\mathcal{A}_B] = 0.$

It follows that, at the symmetric information contracts, the utility of a lead bank representing a good type is $U_L^{SI} = pR - 1$; the utility of a lead bank representing a bad type is equal to zero.

<u>Low-information-intensity optimum contracts.</u> We now construct the separating allocation corresponding to the low-information-intensity optimum of the game with common ownership. Assumption 1.(A.2) guarantees that this optimum allocation exists in this setting.

For the same reason as in the proof of Proposition 2, the lead bank L sets

$$(\mu_B, x_B, R_{B,L}, R_{B,M}, \mathcal{A}_B) = (1, 0, 0, 0, 0),$$

and maximizes $\mathcal{M}_{G,L}(c_G)$ with respect to $c_G = (1, x_G, R_{G,L}, R_{G,M}, \mathcal{A}_G)$, subject to:

$$x_G(pR_{G,M} - 1) + \mathcal{A}_G \ge 0, (A.10)$$

$$x_G q R_{G,L} - \mathcal{A}_G + \theta \kappa \tilde{U}_{B,M_{Co}} \le 0. \tag{A.11}$$

Condition (A.10) is M_{NCo} 's participation constraint, Condition (A.11) is the mimicking constraint, and $\tilde{U}_{B,M_{Co}} \equiv x_G(qR_{G,M}-1) + \mathcal{A}_G$. Proceeding as in the analysis without common ownership, we find that $x_G = 1$, $\mathcal{A}_G = A$, and

$$R_{G,L} = \frac{A}{q} - \frac{\theta \kappa}{(1 - \theta \kappa)q} (qR - 1). \tag{A.12}$$

Plugging these values into $\mathcal{M}_{G,L}(c_G)$ we find that, with common ownership, the utility of the lead bank representing a good borrower at the low-information-intensity optimum separating allocation is

$$U_L^{SE} = (1 - \theta \kappa) A \left(\frac{p}{q} - 1\right) - \frac{\theta \kappa p}{q} (qR - 1) + \theta \kappa (pR - 1).$$

Finally, the participation constraint of M_{NCo} in (A.10) can be rewritten as

$$U_L^{SI} \ge U_L^{SE},\tag{A.13}$$

which holds true by Assumption 1.(A.2).

Equilibrium contracts. Given the results above, and, in particular, Condition (A.13), it follows that: (i) a lead bank L representing a good borrower strictly prefers offering c_G^{SI} to the low-information-intensity optimum contracts; (ii) a lead bank L representing a bad borrower will never get access to funding.

To sum up, if common ownership is an information transmission device, we find that, as with symmetric information, only the good projects will be funded $(x_G = 1, x_B = 0)$, the loan is fully underwritten by the members of the syndicate $(A^{**} = A_G = 0)$ in exchange of an interest rate equal to $1 + r^{**} = 1/p$. In analogy to the case without common ownership, the contract targeting a good type can be interpreted as a debt contract in which the members of the syndicate transfer 1 upfront and get 1/p in the case of project success or else the borrower goes bankrupt.

In the proof, we also show that signaling through the acceptance decision of the commonly owned syndicate members is preferred by the lead bank L to the signaling via the contract design that takes place in the low-information-intensity contracts.

A.3 Empirical Predictions

The following proposition gives the three empirical predictions of the model (also listed in Proposition 1), and formally proves them. Our null hypothesis is that common ownership facilitates information transmission; thus, our predictions are based on the comparison of the results in Proposition 2 and Proposition 3.

Proposition 4. Comparing the lending conditions (1 + r and A) with and without common ownership, we find the results in Proposition 1.

Proof. For the first prediction,

$$r^* - r^{**} = R - \frac{A}{q} - \frac{1}{p} > 0$$

$$\iff A < \frac{q(pR - 1)}{p}$$
(A.14)

$$\iff A < \frac{q(pR-1)}{p}$$
 (A.15)

follows from Assumption 1.

The second prediction directly follows from $A^{**} = 0 < A = A^*$.

For the third prediction, we assume that there are many lead banks in the economy, each with funds A distributed according to some CDF F(A). Then, only the lead banks with sufficiently large funds such that the bad firm will find mimicking unappealing will be able to obtain funding at the conditions of the separating equilibrium with asymmetric information.

66

Appendix B

 ${\bf Table~B.I:~Largest~Shareholders~of~Three~Largest~Banks}$

JP Morgan

2002		2007		2014			
CAPITAL RESEARCH & MANAGEMENT	8%	HANSON INVESTMENT MANAGEMENT	6%	BLACKROCK INC	6%		
BARCLAYS GLOBAL INVESTORS	4%	AXA	5%	VANGUARD GROUP INC	5%		
STATE STREET CORP	3%	STATE STREET CORP	4%	STATE STREET CORP	5%		
DEUTSCHE BANK	3%	FMR LLC	3%	FMR LLC	3%		
AXA	3%	DAVIS SELECTED ADVISERS	2%	CAPITAL WORLD INVESTORS	3%		
		Citigroup					
2002		2007		2014			
STATE STREET CORP	5%	STATE STREET CORP	3%	BLACKROCK INC	6%		
BARCLAYS GLOBAL INVESTORS	4%	CAPITAL RESEARCH GLOBAL INVESTORS	3%	VANGUARD GROUP INC	5%		
MANUFACTURERES LIFE INSURANCE	4%	CAPITAL WORLD INVESTORS	3%	STATE STREET CORP	5%		
FMR CORP	4%	FMR LLC	2%	FMR LLC	3%		
AXA	3%	AXA	2%	WELLINGTON MANAGEMENT GROUP	2%		
		Bank of America					
2002		2007		2014			
MANUFACTURERES LIFE INSURANCE	8%	STATE STREET CORP	3%	BLACKROCK INC	6%		
BARCLAYS GLOBAL INVESTORS	4%	FMR LLC	3%	VANGUARD GROUP INC	5%		
FMR CORP	4%	AXA	2%	STATE STREET CORP	5%		
DEUTSCHE BANK	3%	CAPITAL RESEARCH GLOBAL INVESTORS	2%	FMR LLC	4%		
AXA	3%	WELLINGTON MANAGEMENT GROUP	2%	JPMORGAN	2%		

This table reports the five largest shareholders of the three largest lead arrangers in the U.S. syndicated loan market. Ownership data comes from the Thomson Reuters s34 database.

Table B.II: Variable Definition

Variable	Description
	Loan Variables
All-in-Drawn Spread	Facility all-in-drawn spread over the LIBOR rate
CO	Average common ownership (profit weight) between syndicate lead ar-
CO Ovintila O1 5	ranger and syndicate members
CO Quintile Q1,,5 CO Member-Borrower	Common ownership quintile dummy Average common ownership (profit weight) between borrower and syn-
CO Member-Borrower	dicate banks
Facility Amount	Facility amount divided by borrower's total assets
Loan Amount \$	Loan amount in million dollars
Lead Amount	% of the facility amount retained by the lead bank
# Facilities within Loan	Number of facilities within the same loan
Log Maturity	Natural logarithm of the maturity of the facility in months
Secured Loan	Dummy variable equal to 1 if the facility is secured
Refinancing	Dummy variable equal to 1 if the purpose of the facility is refinancing
Log Number of Members	Natural logarithm of the number of syndicate members
$\label{total continuous market} \mbox{Time-on-the-Market (TOM)}$	Number of days between syndication start (launch) and closing date.
Guarantor	Dummy variable equal to 1 if the facility has a guarantor
Relationship Score	$\frac{1}{N} \times \sum_{j}^{N}$ Number of facilities between lead _i and participant _j in the past 3 years Number of facilities arranged by lead _i in the past 3 years
Reciprocity Depth	Average fraction of reciprocal loans taken by the lead arranger
New Lending Relation	Dummy equal to 1 if the borrower has not received a loan from the lead
ŭ	arranger(s) in the syndicate before
LIBOR 3M	LIBOR 3-months rate at the time of the loan origination
Non-Bank Syndicate Member	Dummy variable equal to 1 if the facility has a non-bank lender in the syndicate
Prob. Default	Borrower default risk as in Bharath and Shumway (2008)
Volatility	SD of the borrower's stock return over the 12 months period before loan issuance
Credit Line	Dummy variable equal to 1 if the facility is a credit line
Term Loan A	Dummy variable equal to 1 if the facility is a term loan A
Term Loan B	Dummy variable equal to 1 if the facility is a term loan B or higher $(C,D,,H)$
	Borrower Variables
Size	natural logarithm of the borrower's total assets
ROA	EBIT over total assets
Book Leverage	Debt over total assets
Tangibilities	PP&T over total assets
S&P Rating AAA, AA, C	S&P credit rating of the borrower.
High Yield	Dummy variable equal to 1 if the borrower has a high-yield rating
Unrated Borrower	Dummy variable equal to 1 if the borrower is unrated
Tobin's Q	Market to book value
Log Int. Cov. Liquidity Ratio	Log of 1 plus interest coverage truncated at 0 Cash over total asset
Elquidity Katlo	
	Bank Variables
Lead Size	Natural logarithm of the bank's total assets
Lead Size Q1,,5	Lead size quintile dummy
Lead Market Equity	Market value of equity capital over total assets
Lead Book Equity	Book value of equity capital over total assets Bank debt over total assets
Lead Leverage Lead ROA	Net income over total assets
Load 100/1	THE INCOME OVER TOTAL ASSETS

 ${\it Table~B.III:} \ \mathbf{Interest~rates~-~full~results~and~robustness~checks}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Spread	Spread	Spread	Spread	No Top2	$\log(\mathrm{Spread})$	TCB	US Banks Only
CO	-27.64***		-20.63***	-48.24***	-40.31*	-0.191***	-11.34**	-70.35**
CO Quintile 2	(-4.06)	-2.943 (-0.80)	(-3.36)	(-4.07)	(-1.86)	(-3.91)	(-2.20)	(-2.65)
CO Quintile 3		-9.126** (-2.16)						
CO Quintile 4		-11.07*** (-3.09)						
CO Quintile 5		-16.15*** (-3.76)						
Facility Amount \$M	-14.89*** (-4.15)	-15.09*** (-4.31)	-8.658*** (-3.00)	-20.48*** (-5.20)	-11.28** (-2.08)	-0.0585*** (-4.41)	3.858 (1.10)	-15.23** (-2.34)
CO Member-Borrower	-11.58*** (-3.01)	-11.26*** (-2.91)	-21.44*** (-13.34)	-9.277 (-0.92)	-31.84** (-2.12)	-0.0643*** (-3.93)	-6.179*** (-2.85)	-57.79** (-2.35)
Log Maturity	0.719 (0.52)	0.691 (0.50)	-0.514 (-0.38)	-2.852* (-1.81)	2.750 (1.29)	0.0255*** (3.90)	-20.74*** (-12.08)	-3.752 (-1.23)
Secured Loan	16.72^{***} (4.75)	16.59*** (4.70)	28.73*** (12.02)	-6.731 (-1.14)	24.21** (2.53)	0.180*** (8.06)	22.01*** (10.58)	3.806 (0.37)
Refinancing	-11.00*** (-9.94)	-10.86*** (-9.77)	-8.631*** (-7.77)	-22.43*** (-9.52)	-11.98* (-1.95)	-0.0649*** (-7.03)	-4.631*** (-4.40)	-9.285 (-0.71)
Log Number of Members	-20.38*** (-11.55)	-20.46*** (-11.49)	-17.96*** (-13.25)	-16.80*** (-6.38)	-18.86*** (-3.14)	-0.123*** (-13.00)	-13.53*** (-10.17)	-45.39*** (-2.83)
Guarantor	-3.102* (-1.71)	-3.002* (-1.70)	-2.846 (-1.64)	-14.48** (-2.49)	-15.70** (-2.11)	0.0224 (1.50)	-4.533** (-2.47)	-2.586 (-0.48)
Relationship Score	-255.4*** (-3.91)	-248.5*** (-3.90)	-351.8*** (-6.41)	-197.3 (-1.66)	-68.00 (-0.54)	-1.964*** (-5.01)	-38.89 (-0.80)	-333.8*** (-3.47)
Reciprocity	-4.262** (-2.29)	-4.386** (-2.37)	0.260 (0.16)	-24.60*** (-4.37)	-11.32 (-1.29)	0.0144 (0.94)	-4.765*** (-2.73)	0.489 (0.04)
New Lending Relation	0.132 (0.13)	0.126 (0.12)	2.803*** (4.08)	-3.149 (-1.41)	6.893 (1.11)	0.00873 (1.46)	3.291*** (3.24)	-9.036 (-1.52)
LIBOR 3M	-329.8 (-0.60)	-333.3 (-0.59)	-893.4* (-1.80)	-1465.7*** (-6.37)	927.1 (0.64)	-5.116* (-1.77)	106.9 (0.22)	-1447.6 (-1.10)
Non-Bank Synd. Member	11.48^{***} (4.24)	11.59^{***} (4.27)	13.37*** (5.88)	5.349 (0.87)	23.61*** (3.94)	0.0805^{***} (6.31)	8.994*** (4.97)	
Prob. Default	37.21*** (4.30)	37.04*** (4.33)	44.80*** (5.25)	27.42* (1.88)	23.19 (1.15)	0.150*** (3.70)	39.41*** (5.75)	-40.61 (-1.35)
Stock Volatility	92.02*** (10.51)	91.83*** (10.52)	99.23*** (16.24)	162.9*** (3.98)	115.5*** (7.04)	0.334*** (6.49)	62.21*** (7.05)	30.69 (1.24)
Size	-6.480*** (-5.26)	-6.595*** (-5.35)	-2.422*** (-2.90)		11.47 (1.31)	-0.0615*** (-6.02)	-0.580 (-0.54)	-16.65 (-1.51)
Profitability	-108.9*** (-6.36)	-109.0*** (-6.34)	1.524 (0.20)		-149.2 (-1.53)	-0.439*** (-5.16)	-69.18*** (-6.94)	-87.95 (-0.89)
SD of Profitability	23.02 (0.66)	23.60 (0.68)	33.52 (1.12)		29.66 (0.23)	0.304 (1.39)	8.520 (0.43)	485.2** (2.34)
Book Leverage	44.95***	44.60***	30.13***		78.22**	0.280***	37.90***	153.8***

Continued on next page . . .

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Spread	Spread	Spread	Spread	No Top2	$\log(\mathrm{Spread})$	TCB	US Banks Only
	(7.06)	(7.06)	(4.86)		(2.28)	(6.97)	(5.66)	(3.92)
Tangibilities	44.15***	43.09***	-3.815		42.60	-0.0182	29.29**	15.70
	(3.38)	(3.36)	(-1.50)		(1.12)	(-0.23)	(2.38)	(0.18)
Tobin's Q	-6.368***	-6.419***	-6.760***		-7.272	-0.0619***	-2.576**	-9.239
	(-5.62)	(-5.75)	(-8.73)		(-1.61)	(-6.61)	(-2.39)	(-1.29)
Log Int. Cov.	-5.056***	-5.025***	-11.69***		6.614	-0.0487***	-5.533***	12.49**
	(-5.81)	(-5.85)	(-19.43)		(1.20)	(-6.60)	(-6.99)	(2.68)
Liquidity Ratio	56.55***	55.76***	36.16***		40.44	0.311***	41.08***	113.4***
	(4.73)	(4.77)	(4.46)		(0.73)	(4.61)	(4.61)	(2.99)
Current Ratio	-1.025**	-0.995**	-2.476***		-3.118***	0.000242	-0.178	-16.57***
	(-2.04)	(-2.01)	(-5.29)		(-3.86)	(0.07)	(-0.49)	(-4.58)
S&P Rating D	34.37	33.42	129.8***		, ,	0.201	-4.542	, ,
	(0.85)	(0.81)	(35.39)			(1.61)	(-0.17)	
S&P Rating CC	34.76*	34.29*	-20.04			-0.125	158.5***	
	(1.77)	(1.74)	(-0.32)			(-1.04)	(9.68)	
S&P Rating CCC	50.34**	51.03**	22.54**			0.197^{*}	25.35**	-184.7**
	(2.56)	(2.60)	(2.39)			(1.95)	(2.27)	(-2.13)
S&P Rating B	-2.884	-2.803	24.41***		-45.51***	-0.0782***	-2.220	-21.67
9	(-0.89)	(-0.88)	(9.40)		(-4.02)	(-4.78)	(-0.70)	(-1.34)
S&P Rating BB	-2.107	-2.064	1.435		-14.65	-0.0113	-11.33***	26.46
o o	(-0.89)	(-0.88)	(0.63)		(-1.52)	(-0.74)	(-8.75)	(1.66)
S&P Rating BBB	-24.72***	-24.84***	-28.95***		-9.978	-0.129***	-23.95***	-34.96**
o .	(-9.36)	(-9.41)	(-10.04)		(-0.80)	(-5.66)	(-15.27)	(-2.01)
S&P Rating A	-37.83***	-38.41***	-48.41***		-24.51*	-0.453***	-21.01***	-47.91*
G	(-8.31)	(-8.36)	(-11.23)		(-1.68)	(-16.75)	(-8.08)	(-1.85)
S&P Rating AA	-22.37***	-22.94***	-50.80***		38.15	-0.620***	-12.95***	-71.07
	(-4.35)	(-4.47)	(-9.00)		(1.22)	(-12.06)	(-3.41)	(-1.47)
S&P Rating AAA	-13.47	-14.09	-36.93***		211.7***	-0.841***	-12.09*	(',
8	(-1.58)	(-1.66)	(-8.20)		(2.83)	(-12.82)	(-1.79)	
Lead Size Q2	-1.439	-0.954	(0.20)	-3.867	-9.385	-0.0436	0.0424	4.662
2004 5110 4/2	(-0.32)	(-0.21)		(-1.01)	(-0.98)	(-1.26)	(0.01)	(0.70)
Lead Size Q3	-8.278	-7.371		-6.875	-29.44**	-0.0957**	-5.668	-6.334
Bead Size &	(-1.48)	(-1.31)		(-1.36)	(-2.51)	(-2.27)	(-1.37)	(-0.64)
Lead Size Q4	-7.695	-6.421		-9.156	-31.33**	-0.106**	-3.696	-8.712
Lead Dize &4	(-1.35)	(-1.13)		(-1.62)	(-2.43)	(-2.51)	(-0.81)	(-0.66)
Lead Size Q5	-12.07*	-10.72*		-10.56*	-57.02***	-0.144***	-5.223	-7.618
Lead Size Q5	(-1.95)	(-1.76)		(-1.75)	(-4.20)	(-2.74)	(-1.12)	(-0.60)
Lead Market Equity	-0.934	-0.359		2.596	-37.52	-0.0980	-11.13	-6.613
Lead Market Equity		(-0.01)				(-0.61)		
Lead Book Leverage	(-0.03) 4.007	3.865		(0.22) 10.19	(-0.85) 19.56	0.0211	(-0.55) 4.924	(-0.28) -8.980
nead book neverage								
Lood DOA	(0.36)	(0.34)		(1.64)	(0.70)	(0.27)	(0.49)	(-0.45)
Lead ROA	58.86	68.52		18.50	293.4	1.525	-20.46	221.3
	(0.33)	(0.38)		(0.19)	(0.72)	(1.63)	(-0.14)	(0.74)
Facility Type FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Load DD	Voc	Voc	No	Vac	Vac	Vac	Vac	Vac

Continued on next page . . .

Yes

Yes

Yes

Yes

No

No

 ${\rm Yes}$

No

Yes

Yes

Yes

Yes

Yes

Yes

Lead FE

Borrower FE

Yes

Yes

$\dots continued$	(1) Spread	(2) Spread	(3) Spread	(4) Spread	(5) No Top2	(6) log(Spread)	(7) TCB	(8) US Banks Only
$SIC2 \times Year$ -Quarter FE	Yes	Yes	No	No	Yes	Yes	Yes	Yes
Lead $\times Year$ -Quarter FE	No	No	Yes	No	No	No	No	No
Borrower $\times Year$ FE	No	No	No	Yes	No	No	No	No
Observations Adjusted R-squared	25439	25439	26525	25147	5332	25439	22780	4735
	0.790	0.790	0.643	0.875	0.825	0.866	0.854	0.902

The table reports the OLS regression parameter estimates and t-statistics of Equation (4). The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). The specification also controls for facility-loan, lender, and borrower characteristics. Standard errors are clustered by lead bank. Columns (1)-(2) report the main results with the full set of controls. Column (3) and (4) report results on the full sample with a different set of fixed-effects. Column (5) excludes all the loans that had Bank of America or JP Morgan as lead arrangers. Column (6) reports the results the logarithm of the all-in-drawn spread as the dependent variable. Column (7) reports the results using total-cost-of-borrowing (TCB) measure developed by Berg et al. (2016) as dependent variable. Column (8) restricts the sample to syndicates composed exclusively by U.S. commercial banks. All variables are defined in Table B.II. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.IV: Common Ownership and Time-on-the-Market (TOM)

	Spread (1)	Spread (2)	Time-on-the-Market (3)
	Invest. Grade	All with TOM	Non Invest. Grade
CO	-18.56*	-48.78**	-31.78**
	(-2.01)	(-2.27)	(-2.07)
Time-On-Market		0.0135	
		(0.14)	
Loan Purpose FE	Yes	Yes	Yes
Facility Type FE	Yes	Yes	Yes
Lead FE	Yes	Yes	Yes
Borrower FE	Yes	No	No
$SIC2 \times Year$ -Quarter FE	Yes	Yes	Yes
Observations	8435	2558	2072
Adjusted R-squared	0.843	0.797	0.785

The table reports the OLS regression parameter estimates and t-statistics of Equation (4) in columns 1 and 2. In column 1, the dependent variable is the all-in-drawn loan spread, expressed in basis points; the OLS regression is performed on the subsample of investment-grade loans. In column 2, the dependent variable is the all-in-drawn loan spread, expressed in basis points; the OLS regression is performed on the subsample of loans for which we have information on time-on-the-market, namely the number of days from the start to completion of syndication. The variable is also used as a control in the regression. In column 3, the dependent variable is time-on-the-market. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). Standard errors are heteroscedasticity-robust. All variables are defined in Table B.II. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.V: Facility Loan Spread and Common Ownership - Alternative definitions of common ownership

	(1)	(2)	(3)	(4)	
	Spread			Amount ximated	
CO	-90.19*** (-3.51)		-21.06*** (-7.33)		
CO Quintile 2	(-3.51)	-2.083	(-7.33)	-2.024***	
CO Quintile 3		(-0.64) -8.138**		(-6.04) -2.563***	
CO Quintile 4		(-2.48) -10.63***		(-6.71) -3.247***	
CO Quintile 5		(-2.99) -10.80** (-2.41)		(-7.44) -4.101*** (-8.87)	
Loan Purpose FE	Yes	Yes	Yes	Yes	
Facility Type FE	Yes	Yes	Yes	Yes	
Lead FE	Yes	Yes	Yes	Yes	
Borrower FE	Yes	Yes	Yes	Yes	
SIC2 X Year-Quarter FE	Yes	Yes	Yes	Yes	
Observations Adjusted R-squared	25401 0.791	25401 0.790	24111 0.781	24033 0.781	

The table reports the OLS regression parameter estimates and t-statistics of Equation (4). The dependent variables are: the all-in-drawn loan spread, expressed in basis points in Columns (1) and (2); and the percentage of loan retained calculated according to Blickle et al. (2020)'s approximation method in Columns 3 and 4. The coefficient of interest is the one of CO, a measure of common ownership defined as the sum of the minimum commonly held shares by investors between the lead arranger and other syndicate members. Standard errors are clustered by lead bank. All variables are defined in Table B.II.

***, ***, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.VI: Interest rates - CO value weighted

	Full S	ample	Same Facility Type Same Loan	
	(1)	(2)	(3)	(4)
CO_{VW}	-29.43*** (-4.13)		-57.49*** (-4.69)	
CO_{VW} Quintile 2	()	-2.413	,	-5.494
CO_{VW} Quintile 3		(-0.60) -6.974 (-1.60)		(-0.70) -31.14*** (-4.54)
CO_{VW} Quintile 4		-11.41***		-33.87***
CO_{VW} Quintile 5		(-2.68) -19.37*** (-4.33)		(-4.52) -32.15*** (-4.88)
Facility Type FE	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes
Year-Quarter FE	No	No	Yes	Yes
Lead FE	Yes	Yes	Yes	Yes
Borrower FE	Yes	Yes	No	No
$SIC2 \times Year$ -Quarter FE	Yes	Yes	No	No
Observations Adjusted R-squared	25385 0.791	25385 0.791	1429 0.730	1429 0.732

The table reports the OLS regression parameter estimates and t-statistics of Equation (4). The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of CO_{VW} , a measure of common ownership between the lead and member banks in the same facility, a value-weighted average of the profit weights κ_{ab_i} given in Equation (1). The specification also controls for facility-loan, lender, and borrower characteristics. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.VII: Interest rates - Within-group estimates

	Same Facility Type - Same Loan	Same Facility Type - Same Borrower-Year
	(1)	(2)
CO High	-14.83* (-1.76)	-9.760** (-2.38)
Facility Type FE	Yes	Yes
Loan Purpose FE	Yes	Yes
Year-Quarter FE	Yes	Yes
Observations	227	1739
Adjusted R-squared	0.965	0.597

The table reports the OLS regression parameter estimates and t-statistics of Equation (4) on a sample of loans containing facilities of the same type displaying high and low common ownership within a given loan. The dependent variable is the all-in-drawn loan spread, expressed in basis points. The coefficient of interest is the one of $CO\ High$, an indicator variable taking the value of one when common ownership between the lead and member banks in the same facility is high (quintile 4 and 5) and zero otherwise. All variables are defined in Table B.II. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.VIII: Interest rates

	(1)	(2)	(3)
Treat x Post	-42.213* (-2.00)	-72.133*** (-4.86)	-80.666*** (-15.55)
Loan controls	Yes	No	No
Facility type FE	Yes	No	No
Loan purpose FE	Yes	No	No
SIC $3 \times \text{Year}$	Yes	No	No
Lead FE	Yes	No	No
SIC 3	No	No	Yes
Observations	5,185	5,185	5,185

The table reports the parameter estimates and t-statistics of Equation (5). The dependent variable is the all-in-drawn loan spread, expressed in basis points. In column (1), we report the OLS estimates from a two-way-fixed-effect regression; in columns (2) and (3) we report the estimates from Sant'Anna and Zhao (2020) difference-in-differences estimator. The variable treat is an indicator equal to one if the facility level of common ownership is in the top tercile of the CO delta distribution; CO delta is calculated as the difference between the actual level of common ownership between lenders and the counterfactual level of common ownership between lenders where we treat the holdings of BlackRocks and BGI as one entity. The variable Post is an indicator equal to one if the loan originates after the merger BlackRock-BGI. Standard errors are clustered by lead bank. All variables are defined in Table B.II in the Internet Appendix. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.IX: Facility amount retained by the lead bank - full results and robustness checks

	(1) Lead Amount Dealscan	(2) Lead Amount Dealscan	(3) Not Term B Not Leveraged	(4) Not Term B Not Leveraged	(5) Lead Amount Imputed	(6) Lead Amount Imputed
СО	-3.190***		-3.744**		-2.018*	
	(-3.08)		(-2.08)		(-1.79)	
CO Quintile 2		-0.691		-2.356		-1.725***
		(-0.97)		(-1.39)		(-3.73)
CO Quintile 3		-2.665***		-2.994**		-2.057***
		(-2.85)		(-2.56)		(-3.58)
CO Quintile 4		-2.885***		-2.962**		-2.591***
		(-3.43)		(-2.27)		(-4.32)
CO Quintile 5		-2.052**		-2.637*		-1.480**
		(-2.36)		(-2.03)		(-2.51)
Facility Amount \$M	0.378	0.367	3.751***	3.767***		
	(0.46)	(0.52)	(4.31)	(4.69)		
CO Member-Borrower	-0.795*	-0.522	0.714*	0.764*	-0.331	-0.232
	(-1.73)	(-1.14)	(1.71)	(1.83)	(-1.54)	(-1.12)
Log Maturity	0.439**	0.373*	-0.316	-0.355*	-1.574***	-1.557***
	(2.12)	(1.69)	(-1.46)	(-1.72)	(-13.45)	(-14.08)
Secured Loan	1.169***	1.171***	-1.326**	-1.369***	-0.377*	-0.412*
	(3.67)	(3.70)	(-2.64)	(-2.80)	(-1.82)	(-1.95)
Refinancing	-0.200	-0.174	0.0943	0.156	-2.291***	-2.271***
	(-0.64)	(-0.62)	(0.20)	(0.33)	(-13.14)	(-14.33)
Log Number of Members	-15.14***	-14.87***	-13.31***	-13.11***		
	(-14.25)	(-14.71)	(-9.11)	(-9.87)		
Guarantor	0.949***	0.757**	-0.149	-0.321	-0.466**	-0.436**
	(2.76)	(2.47)	(-0.51)	(-0.96)	(-2.42)	(-2.55)
Relationship Score	11.75	12.88	-115.8***	-126.2***	66.51***	66.95***
	(1.45)	(1.57)	(-3.88)	(-3.91)	(9.40)	(9.73)
Reciprocity	-1.846***	-1.780***	-1.245**	-1.121**	-3.884***	-3.831***
	(-3.77)	(-3.71)	(-2.35)	(-2.49)	(-7.78)	(-7.71)
New Lending Relation	0.294	0.346	-0.0458	0.0620	-0.126	-0.0199
	(1.11)	(1.27)	(-0.18)	(0.22)	(-0.88)	(-0.15)
LIBOR 3M	-15.44	-11.23	-320.5***	-303.8**	130.3*	136.9*
	(-0.16)	(-0.11)	(-2.86)	(-2.67)	(1.71)	(1.89)
Non-Bank Synd. Member	2.323***	2.320***	0.975	0.992	-1.066***	-1.083***
·	(9.05)	(8.90)	(1.56)	(1.59)	(-4.98)	(-4.97)
Prob. Default	0.933	1.135	6.354**	6.342**	2.796***	2.573***
	(0.31)	(0.39)	(2.22)	(2.70)	(4.36)	(3.89)
Stock Volatility	5.311***	4.792**	9.870**	9.706**	2.057***	2.350***
·	(3.18)	(2.61)	(2.58)	(2.57)	(3.52)	(4.08)
Size	0.438***	0.399**	0.745***	0.615**	-2.688***	-2.582***
	(2.92)	(2.48)	(2.99)	(2.54)	(-14.33)	(-13.93)
Profitability	-1.707	-1.575	-1.187	-0.418	-0.740	-0.604
v	(-1.44)	(-1.29)	(-0.75)	(-0.30)	(-0.75)	(-0.61)
SD of Profitability	10.00***	9.171***	4.179	3.227	-0.719	-0.845
	(3.60)	(3.19)	(0.91)	(0.70)	(-0.31)	(-0.36)
Book Leverage	1.101	0.858	1.576	1.303	-1.670**	-1.694**

Continued on next page . . .

Table B.IX: Facility amount retained by the lead bank - full results and robustness checks

	(1) Lead Amount Dealscan	(2) Lead Amount Dealscan	(3) Not Term B Not Leveraged	(4) Not Term B Not Leveraged	(5) Lead Amount Imputed	(6) Lead Amount Imputed
	(0.49)	(0.45)	(0.53)	(0.43)	(-2.35)	(-2.32)
Tangibilities	-2.443**	-3.177***	1.831	1.316	-2.856**	-2.753**
	(-2.24)	(-3.39)	(1.47)	(1.02)	(-2.35)	(-2.28)
Tobin's Q	-0.477**	-0.498**	0.0846	-0.00989	-0.300**	-0.262**
	(-2.10)	(-2.19)	(0.20)	(-0.02)	(-2.54)	(-2.23)
Log Int. Cov.	0.303	0.239	0.0140	-0.0981	-0.154	-0.174
	(1.25)	(1.02)	(0.05)	(-0.33)	(-0.97)	(-1.08)
Liquidity Ratio	-2.334	-2.118	2.900*	3.911**	2.423**	3.034**
	(-0.72)	(-0.67)	(1.80)	(2.22)	(2.18)	(2.40)
Current Ratio	0.269*	0.288*	0.215	0.162	0.0126	0.00711
	(1.85)	(1.96)	(1.12)	(0.68)	(0.36)	(0.20)
S&P Rating D	, ,	· /	. ,	` ,	-3.624	-4.772
					(-0.99)	(-1.51)
S&P Rating CC					4.254^{*}	3.095
Ü					(1.80)	(1.36)
S&P Rating CCC	-6.628*	-7.384**			-0.800	-1.259
	(-1.87)	(-2.24)			(-0.79)	(-1.59)
S&P Rating B	-1.872***	-1.423**	-12.42***	-12.69***	-0.0302	0.0322
	(-3.98)	(-2.59)	(-4.88)	(-4.63)	(-0.07)	(0.07)
S&P Rating BB	-0.938*	-1.164**	-0.123	-0.245	-0.821***	-0.771***
car ranng bb	(-1.71)	(-2.39)	(-0.10)	(-0.22)	(-3.29)	(-2.90)
S&P Rating BBB	-0.867**	-1.149***	-0.838	-1.014	-0.0833	-0.0557
Seel Teating BBB	(-2.32)	(-3.04)	(-0.74)	(-0.93)	(-0.22)	(-0.16)
S&P Rating A	-0.155	-0.420	-0.527	-0.659	0.185	0.171
bar ranng ri	(-0.22)	(-0.56)	(-0.55)	(-0.79)	(0.37)	(0.36)
S&P Rating AA	0.369	0.251	-0.320	-0.231	0.696	0.779
S&I Rating AA	(0.53)	(0.34)	(-0.24)	(-0.18)	(1.39)	(1.62)
S&P Rating AAA	1.514	1.283	1.026	0.646	-1.267	-1.586*
5&1 Rating AAA	(1.24)	(1.15)	(0.73)	(0.46)	(-1.50)	(-1.86)
Lead Size Q2	-0.971	-0.981	-4.664***	-4.961***	-1.146*	-1.097*
Lead Size Q2						
Lead Size Q3	(-1.08)	(-1.10)	(-4.77) -5.136***	(-4.52) -5.530***	(-1.88) -1.667**	(-1.75) -1.433**
Lead Size Q3	-1.292	-1.249				
I 1 C: 04	(-1.21) -0.809	(-1.21) -0.992	(-5.99)	(-5.40) -6.126***	(-2.37)	(-2.07)
Lead Size Q4			-5.756***		-1.271	-1.145
I IC. OF	(-0.76)	(-0.99)	(-5.16)	(-4.82)	(-1.33)	(-1.27)
Lead Size Q5	-0.239	-0.733	-5.679***	-6.199***	-0.691	-0.596
T 136 1 . T	(-0.22)	(-0.71)	(-5.38)	(-4.95)	(-0.64)	(-0.59)
Lead Market Equity	-2.535	-0.850	-4.723	-1.426	-1.584	-1.162
	(-0.64)	(-0.23)	(-1.19)	(-0.52)	(-0.55)	(-0.42)
Lead Book Leverage	0.336	0.458	2.131	3.272	1.666	0.369
1 1004	(0.12)	(0.17)	(0.87)	(1.51)	(0.98)	(0.22)
Lead ROA	-30.22	-19.18	50.57**	33.58	5.367	8.905
D 111. D 22	(-0.77)	(-0.52)	(2.06)	(1.42)	(0.24)	(0.43)
Facility Type FE	Yes	Yes	Yes	Yes	Yes	Yes
Loan Purpose FE	Yes	Yes	Yes	Yes	Yes	Yes
Lead FE	Yes	Yes	Yes	Yes	Yes	Yes
Borrower FE	No	No	No	No	Yes	Yes

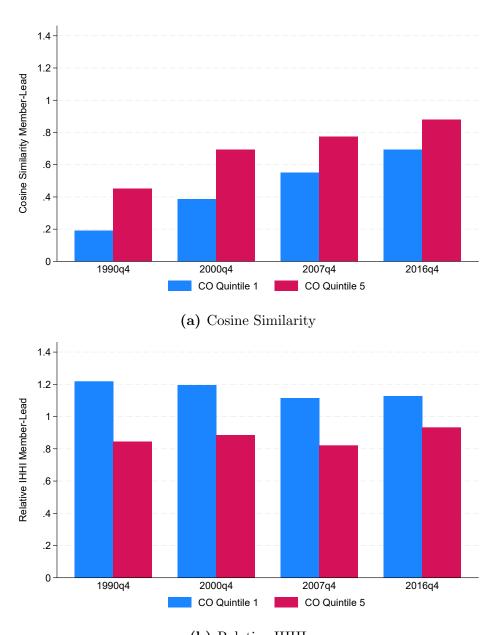

Continued on next page . . .

Table B.IX: Facility amount retained by the lead bank - full results and robustness checks

	(1)	(2)	(3)	(4)	(5)	(6)
	Lead Amount	Lead Amount	Not Term B	Not Term B	Lead Amount	Lead Amount
	Dealscan	Dealscan	Not Leveraged	Not Leveraged	Imputed	Imputed
$SIC2 \times Year-Quarter FE$	Yes	Yes	Yes	Yes	Yes	Yes
Observations Adjusted R-squared	8095	8075	2753	2748	24151	24073
	0.743	0.753	0.807	0.840	0.697	0.701

The table reports the OLS regression parameter estimates and t-statistics of Equation (6). The dependent variable is the percentage facility amount retained by each lead bank in the syndicate. The coefficient of interest is the one of CO, a measure of common ownership between the lead and member banks in the same facility given in Equation (2). The specification also controls for facility-loan, lender, and borrower characteristics. Standard errors are clustered by lead bank. Columns (1)-(2) report the main results with the full set of controls. Columns (3)-(4) exclude all Term-Loan B and Leveraged facilities. Columns (5)-(6) contains the baseline results using the amount retained by the lead arranger imputed following Blickle et al. (2020). All variables are defined in Table B.II. ***, ***, and * correspond to statistical significance at the 1%, 5%, and 10% level, respectively.

Figure B.1: Decomposition of member-lead common ownership measure

(b) Relative IHHI

The figure reports the decomposition of the average values of syndicate common ownership (Member-Lead) for the highest and lowest quintile of the common ownership (Member-Lead) distribution over time. Syndicate common ownership (CO) is defined in Equation 2 and the decomposition in Equation 3.