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Abstract

We propose a random coe¢ cients nested logit (RCNL) model to compare the

tractable nested logit (NL) model with the more complex random coe¢ cients logit

(RC) model. After a simulation study, we use data on the European automobile mar-

ket. Both the NL and RC models are rejected against the RCNL model. The RC model

results in di¤erent substitution patterns and a wider market de�nition than the NL

and RCNL model. Nevertheless, the predicted price e¤ects from mergers are robust

across models. Our �ndings stress the importance of accounting for discrete sources of

market segmentation not captured by continuous product characteristics.
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1 Introduction

Discrete choice models of product di¤erentiation have gained considerable importance in

empirical work. Because they treat products as bundles of characteristics, they o¤er the

possibility to uncover rich substitution patterns with a limited number of parameters. Berry

(1994) developed a framework to estimate a class of discrete choice models with unobserved

consumer heterogeneity based on aggregate sales data. His framework includes the random

coe¢ cient logit model of Berry, Levinsohn and Pakes (1995) (hereafter BLP), the nested

logit model (with special random coe¢ cients on discrete product characteristics) and the

logit model (without consumer heterogeneity).

The logit and nested logit models have been popular because of their computational

simplicity, since they can be transformed to simple linear regressions of market shares on

product characteristics. At the same time, they have long been criticized because they

yield too restrictive substitution patterns. The logit model assumes that consumer prefer-

ences are uncorrelated across all products, implying symmetric cross-price elasticities. The

nested logit model allows preferences to be correlated across products within the same group

or �nest�. It thus entails a special kind of random coe¢ cients on group dummy variables

(Cardell, 1997). It allows products of the same group to be closer substitutes than products

of di¤erent groups, but the aggregate substitution patterns remain restrictive: cross-price

elasticities within the same group are still symmetric, and substitution outside a group is

symmetric to all other groups. In contrast, BLP�s random coe¢ cients logit model incorpo-

rates random coe¢ cients for continuously measured product characteristics (and at the same

time still allows for random coe¢ cients on group dummy variables with other distributional

assumptions than those of the nested logit model). This creates potentially more �exible

substitution patterns, where products tend to be closer substitutes as they have more sim-

ilar continuous characteristics. However, the random coe¢ cients model is computationally

more demanding, and several recent papers have studied a variety of problems relating to its

numerical performance; see Knittel and Metaxoglou (2008), Dubé, Fox and Su (2012) and

Judd and Skrainka (2011).

Against this background it is a particularly timely question to assess whether and when

the popular logit and nested logit models can be used as reasonable alternatives to the

computationally more demanding random coe¢ cients logit model. In this paper we provide

a systematic comparison between these demand models, and as an illustration assess how

they perform in competition policy analysis. To accomplish this, we start from a random

coe¢ cients nested logit model (RCNL), which combines the random coe¢ cients logit (RC)

and nested logit (NL) models. The random coe¢ cients on the continuous characteristics
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can take any distributional form, as in the general RC framework. In contrast, the random

coe¢ cients for the discrete characteristics take the special distributional assumptions of the

NL model. This simpli�es the computational burden, and enables us to assess the relative

importance of both sources of consumer heterogeneity.1

To motivate our empirical analysis, we begin with two groups of Monte Carlo experi-

ments. First, we consider an RC model with a normally distributed random coe¢ cient for

a group dummy variable. For a wide variety of designs we �nd that the true RC model and

a misspeci�ed NL model result in similar estimated own- and cross-price elasticities. Hence,

the speci�c distributional assumptions of the RC and NL model regarding the valuation

for the group dummy variable do not matter much in this simple set-up.2 Second, we con-

sider RCNL models with both a normally distributed random coe¢ cient for a continuous

characteristic and a nesting parameter for a group dummy variable. For the wide range of

considered designs, we �nd that both the RC and the NL model are reasonable approxi-

mations, with stronger substitution within than between groups. The RC model provides

a better approximation of the own-price elasticities than the NL model, while both models

tend to underestimate the cross-price elasticities within a group.

These �ndings are con�rmed in our main empirical analysis. We collected a unique dataset

on the automobile market for nine European countries covering around 90% of the car sales

in the European Union during 1998�2006. The market is commonly classi�ed in various

di¤erent segments (subcompact, compact, intermediate, standard, luxury, SUV and sports)

and car manufacturers typically promote their models as belonging to one of these segments.

Hence, the segments may proxy for observed product characteristics such as the size, en-

gine performance and fuel e¢ ciency. But it is also possible that they capture intrinsically

unobserved features shared by di¤erent car models. Our dataset is therefore particularly

interesting to compare the performance of the logit, NL, RC and RCNL models. Consistent

with earlier �ndings, the logit model is rejected against both the NL and RC models. More

importantly, in the RCNL model the nesting parameters become quantitatively smaller (con-

sistent with the results of our Monte Carlo experiment), but they remain highly signi�cant

and economically important. Furthermore, the random coe¢ cients relating to car size be-

come insigni�cant, while the random coe¢ cients relating to engine power and fuel e¢ ciency

remain signi�cant. These various �ndings suggest that the nesting parameters may proxy

1As shown by McFadden and Train (2000), any discrete choice model can be approximated by an RC
model. This of course also applies to our setting. For example, it is possible to include random coe¢ cients
for the group dummy variables directly in an RC model (with other distributional assumptions than those of
the nested logit). This would, however, be computationally very costly when there are many group dummy
variables.

2This is also con�rmed by a reverse set of Monte Carlo�s where the true data generating process is that
of a NL model, and the RC is the misspeci�ed model.
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for random coe¢ cients of some of the observed continuous characteristics, but also capture

other unobserved dimensions of consumer preferences.

To illustrate the implications of our �ndings, we present own- and cross-price elasticities

for the di¤erent models, and we perform policy counterfactuals common in competition

policy: market de�nition and merger simulation. In terms of substitution patterns, the

results are consistent with our Monte Carlo analysis: the RC model better approximates

the own-price elasticities than the NL model, and both models somewhat underestimate the

cross-price elasticities within segments (but less so for the NL model). Despite the di¤erent

substitution patterns, merger simulations of two domestic mergers yield robust conclusions

across di¤erent demand models: while the simple logit clearly appears inappropriate, the NL,

RC and RCNL all tend to give robust conclusions. In contrast, the conclusions for market

de�nition are less robust: the RC suggests a wider market de�nition than the NL and RCNL

model. This is true whether we start from �segments�or from �ten nearest substitutes�as

the candidate relevant markets. We draw two implications for competition policy. First,

in market de�nition it is important to include su¢ cient sources of market segmentation

in the demand model. Second, the robustness in merger simulation suggests the simple NL

model can be su¢ cient to obtain reliable policy conclusions, despite the di¤erent substitution

patterns from the RC model.

More generally, one can draw two implications for the choice of demand model in ap-

plied work. First, the choice between the tractable NL model and the computationally more

complex RC model may depend on the application. In our analysis of hypothetical domestic

mergers, consumer heterogeneity regarding the cars domestic/foreign origin is particularly

relevant, and the NL model captures this reasonably well. In other applications, the most

relevant aspects of consumer heterogeneity may not be captured well by nesting parameters

for groups or subgroups. In these cases, it is appropriate to estimate RC models with random

coe¢ cients for the most relevant continuous characteristics.

Second, our results imply that it can be important to account for sources of market seg-

mentation that are not captured by continuously measured product characteristics. Adding

a nested logit structure to BLP�s random coe¢ cients model is a tractable way to accomplish

this, since it gives closed-form expressions for integrals in the choice probabilities.3 In princi-

ple, BLP�s framework can of course also incorporate random coe¢ cients on group dummies

(and in a more �exible way). But this is more complicated because it increases the dimen-

sionality of the integrals that need to be simulated, and in practice it often proves di¢ cult

3Instead of the nested logit structure, one may also consider other tractable models from McFadden�s
(1978) generalized extreme value model (GEV). Examples are Small�s (1987) model of ordered alternatives
and Bresnahan, Stern and Trajtenberg�s (1997) �principles of di¤erentiation model�, and most recently, the
�exible coe¢ cient multinomial logit model of Davis and Schiraldi (2012).
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to estimate the coe¢ cients as precisely as in the closed form GEV models. For example,

Nevo (2001) estimates a rich demand model for the U.S. cereals market. His model includes

three random coe¢ cients for the segments (all-family, kids and adult), but two of these are

estimated rather imprecisely.

Our comparison of alternative discrete choice models is timely for several related reasons.

First, a few recent papers have thoroughly studied several (often commonly known) numerical

di¢ culties with the aggregate random coe¢ cients model: the role of starting values and

di¤erent optimization methods (Knittel and Metaxoglou (2008)); the accuracy of BLP�s

contraction mapping to invert the market share system (Dubé, Fox and Su (2012)); and

alternative methods of integration of the market share system (Judd and Skrainka (2011)).

We draw from these �ndings in our own empirical analysis, by cautiously considering multiple

starting values, using a tight inner loop contraction mapping, and carefully approximating

the market share integrals.4

Second, there is a large and rapidly growing empirical literature estimating aggregate

discrete choice models of product di¤erentiation, with applications in industrial organiza-

tion, international trade, environmental and public economics, marketing, �nance, etc. A

complete review of the applied aggregate discrete choice literature is beyond the scope of this

introduction, so we limit attention here to early work. Much of this work has actually also

looked at automobiles. Bresnahan (1981) and Feenstra and Levinsohn (1995) are important

contributions preceding the seminal work of Berry (1994) and BLP. Verboven (1996) and

Fershtman and Gandal (1998) are early applications of Berry�s (1994) aggregate nested logit

model. Nevo (2001), Petrin (2002) and Sudhir (2001) are early applications with interesting

extensions of BLP�s full random coe¢ cients model. In recent years, academic work appears

to focus more exclusively on the random coe¢ cients models, whereas competition policy

practitioners often use the logit and nested logit models. Our �ndings on the automobile

market suggest that the nested logit model may not only be a reasonable approximation

in competition policy, but also in other applications where the market segments are the

most relevant di¤erentiating dimensions, for example an analysis of trade liberalization. In

contrast, applications on for example quality discrimination or environmental policy would

warrant estimating BLP�s random coe¢ cients logit model, since the relevant random coe¢ -

cients (engine power and fuel e¢ ciency) are not well-captured by the nesting parameters.5

4To invert the market share system, we do not consider Dubé, Fox and Su�s (2012) alternative MPEC
approach, because we have a large number of products/markets, implying a large number of nonlinear
constraints in their constrained optimization algorithm. To approximate the market share integrals, we follow
Judd and Skrainka�s (2011) in our Monte Carlo with low-dimensional integrals, and use a large number of
Halton draws in our empirical analysis with high-dimensional integrals.

5Wojcik (2000) also compares the NL and RC model. She claims the NL model is likely to be superior,
but Berry and Pakes (2001) raise serious methdological problems with her comparison. Our approach is
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The rest of this paper is organized as follows. Section 2 presents the model and con-

ducts Monte Carlo experiments. Section 3 uses the dataset for the European car market to

estimate the logit, NL, RC and RCNL models, and the implied price elasticities. Section 4

draws implications for competition policy analysis, applying market de�nition and merger

simulation. Conclusions follow in section 5.

2 The model

2.1 Demand

We consider a random coe¢ cients nested logit model (RCNL) that contains the logit, nested

logit (NL) and random coe¢ cients logit (RC) as special cases. As we discuss below, the

RCNL model can itself be seen as a random coe¢ cients model, with special distributional

assumptions for the heterogeneity on the discrete product characteristics.

There are T markets, t = 1; : : : ; T . In each market t there are Lt potential consumers.

Each consumer imay either choose the outside good 0 or one of the J di¤erentiated products,

j = 0; : : : ; J . Consumer i�s conditional indirect utility for the outside good is ui0t = "i0t. For

products j = 1; : : : ; J it is

uijt = xjt�i + �jt + "ijt; (1)

where xjt is a 1�K vector of observed product characteristics (including price), �i is a K�1
vector of random coe¢ cients capturing the individual-speci�c valuations for the product

characteristics, �jt refers to unobserved product characteristics (to the econometrician), and

"ijt is a remaining individual-speci�c valuation for product j.

Assume that the distributions of the individual valuations �i and "ijt are mutually inde-

pendent. The random coe¢ cients vector, �i, can be speci�ed as follows. Let � be a K � 1
vector of mean valuations of the characteristics, � be aK�1 vector with standard deviations
of the valuations, and �i be a K�1 vector with standard normal random variables. We then
specify

�i = � + ��i; (2)

where � is a K �K diagonal matrix with the standard deviations � on the diagonal.6

rather di¤erent from Wojcik since we start from a RCNL model that enables a better comparison of the NL
and RC models. Furthermore, we follow prediction excercises in the spirit of those advocated by Berry and
Pakes (2001), i.e. focus on comparing price elasticities and other counterfactuals. Our conclusions are much
more nuanced since we focus on identifying circumstances where the NL may, or may not, be a reasonable
alternative.

6In principle, one may also specify non-zero o¤-diagonal elements in � to allow consumer valuations to
be correlated across characteristics.
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The individual valuations for the products j, "ijt, follow the distributional assumptions of

the nested logit model, which allows valuations to be correlated across products in the same

group. More speci�cally, suppose each product j can be assigned to one of G collectively

exhaustive and mutually exclusive groups, g = 0; : : : ; G, where group 0 is reserved for the

outside good 0. Write

"ijt = � igt + (1� �)"ijt; (3)

where "ijt is iid extreme value and � igt has the (unique) distribution such that "ijt is extreme

value. The �nesting parameter��, with 0 � � < 1, proxies for the degree of preference cor-
relation between products of the same group. As � goes to one, the within-group correlation

of utilities goes to one, and consumers perceive products of the same group as perfect sub-

stitutes. As � goes to zero, the within-group correlation goes to zero, and the model reduces

to the simple logit.

Following Berry�s (1994) discussion of Cardell (1997), the � igt can be interpreted as

random coe¢ cients on group-speci�c dummy variables. More speci�cally, let djgt be a group

dummy variable equal to 1 if j belongs to group g. Using (2) and (3) and de�ning the mean

utility for product j, �jt � xjt� + �jt, we can write consumer i�s conditional indirect utility
(1) as

uijt = �jt + xjt��i +
XG

g=1
djgt� igt + (1� �)"ijt: (4)

Indirect utility thus contains consumer heterogeneity for the continuous characteristics xjt
and consumer heterogeneity for the group dummy variables djgt. The heterogeneity in the

valuations for djgt follows the speci�c distributional assumptions of the nested logit. As an

alternative, one may include djgt in the xjt vector. This potentially creates more �exibility,

in particular it also allows one to incorporate correlation in the random coe¢ cients for the

continuous and discrete characteristics. This will come, however, at an increased computa-

tional cost. We can see several special cases in (4). If �k = 0 for all elements in �, we obtain

the standard nested logit model. If � = 0, we obtain BLP�s random coe¢ cients logit model.

And if all �k = � = 0, the simple logit model results.

Each consumer i in market t chooses the product j that maximizes her utility. With the

above assumptions, the conditional probability that consumer i chooses product j in market

t takes the nested logit form:

�jt(�t; �; �i) =
exp ((�jt + xjt��i) = (1� �))

exp (Iig= (1� �))
exp Iig
exp Ii

; (5)
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where � = (�; �; �) and Iig and Ii are McFadden�s (1978) �inclusive values�de�ned by

Iig = (1� �) ln
XJg

k=1
exp ((�kt + xkt��i) = (1� �)) ;

Ii = ln
�
1 +

XG

g=1
exp Iig

�
;

and Jg is the number of products in segment g (such that
PG

g=1 Jg = J). The unconditional

choice probability or aggregate market share of product j in market t is:

sjt(�t; �) =

Z
�jt(�t; �; �)�(�)d�; (6)

which simpli�es to BLP�s random coe¢ cients logit model if � = 0. The market share integral

may be approximated using Monte Carlo integration as in BLP or using quadrature rules as

suggested by Judd and Skrainka (2011).

To estimate the demand parameters �, we follow Berry (1994), BLP and the subsequent

literature. We equate the observed market share vector (i.e. unit sales per product divided

by the number of potential consumers Lt) to the predicted market share vector, st = st(�t; �).

We solve this system for �t in each market t using �xed point iteration on

�r+1t � �rt + (1� �)(ln(st)� ln(st(�rt ))); (7)

until convergence is reached (�r+1t � �rt ). This is a slight modi�cation of BLP�s contraction
mapping: it dampens the �nal term by 1 � �; see also Brenkers and Verboven (2006). In
the Appendix A we show that this dampening is necessary to satisfy the conditions for a

contraction mapping in nested logit models when � is su¢ ciently high (as opposed to logit

models where dampening is not needed). Since the error term enters additively in �t, solving

for �t gives a solution for the error term �jt for each product j = 1; : : : ; J in market t. We

can then interact this with a set of instruments providing the moment conditions to proceed

with GMM, as we discuss in more detail in section 3.

2.2 Monte Carlo experiments

Overview Before analyzing the car market data we consider two set-ups of Monte Carlo

experiments. Set-up 1 generates data sets according to random coe¢ cients logit (RC) models.

We specify one normally distributed random coe¢ cient for a discrete product characteristic,

a dummy variable for the product�s group. We focus on the performance of estimating mis-

speci�ed nested logit (NL) models, where the nests are de�ned according to the same group
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dummy variable. For a wide range of designs, we �nd that the NL model approximates the

substitution patterns of the RC model very well, so the di¤erent distributional assumptions

do not matter much.

Set-up 2 goes a step further and also includes consumer heterogeneity for a continuous

product characteristic. We generate data sets according to more general random coe¢ cients

nested logit (RCNL) models, with one normally distributed random coe¢ cient for a continu-

ous product characteristic (price) and one nesting parameter for the group dummy variable.

Across all our designs we obtain the following robust conclusions. While both the logit, NL

and RC models yield biased parameter estimates of the true RCNL model, only the logit

model generates implausible substitution patterns. The RC model provides a better approx-

imation of the own-price elasticities than the NL model. Furthermore, in contrast with the

logit model, both the RC and the NL model yield stronger substitution within than between

groups (although all models underestimate the cross-price elasticities between products of

the same group).

We will focus most of the discussion on substitution biases from estimating misspeci�ed

models. But we also take the opportunity to brie�y comment on the numerical performance

of the di¤erent models in light of the recent literature on these issues.

Set-up We conduct a large number of Monte Carlo experiments in two main set-ups:

a RC model for a discrete characteristic and a RCNL model. For each experiment we

generate 1,000 datasets. Each dataset consists of T = 50 independent markets and J = 25

products per market. Each product j in each market t has an observed characteristics vector

xjt = (1; x
1
jt; djt): a constant, one continuous characteristic x

1
jt (the price variable), and one

discrete characteristic djt, a dummy variable referring to the product�s group or nest (segment

0 or 1). Furthermore, each product has an unobserved product characteristic �jt, which is

drawn from a standard normal distribution and uncorrelated with xjt. We thus abstract

from the issue of endogeneity of some product characteristics (typically price), since we want

to focus on comparing the performance of misspeci�ed models.7

We draw the continuous price variable x1jt from a lognormal distribution, which insures

positive realizations and roughly mimics the distribution of prices in empirical datasets. It

will be convenient to treat the dummy variable for the product�s group djt as the realization

7For a recent discussion on the endogeneity of product characteristics, and the role of instruments in the
GMM context, see Armstrong (2012) and Reynaert and Verboven (2012).

8



of a latent continuous variable d�jt. More speci�cally, assume that: 
lnx1jt
d�jt

!
s N

 
0

0
;
1 &xd

&xd 1

!
;

and djt = 1fd�jt>g. In the Monte Carlo designs we can vary &xd, i.e. the correlation between

d�jt and x
1
jt, to capture the extent to which the product�s group is informative about the

continuous characteristic. We can also vary the cuto¤ point , to set the number of products

allocated in group 0 and group 1. Unless stated otherwise, we set &xd = 0 and  = 0 as the

default values.

We specify a broad range of preference parameters, i.e. the mean valuations � =

(�0; �x1 ; �d), the standard deviations � = (�0; �x1 ; �d) and the nesting parameter �. We

discuss the various parameter designs in more detail in the next subsection, where we ex-

plain the results for our two main set-ups.

The market shares are computed from the market share equation (6), using the generated

product characteristics (xjt and �jt) and the assumed demand parameters � = (�; �; �). To

approximate the market share integral (6) over the normal random variable vector �i, we

use an accurate polynomial-based Sparse Grid quadrature rule as suggested by Judd and

Skrainka (2011):

sjt(�t; �) �
XN

i=1
'i
exp ((�jt + xjt��i) = (1� �))

exp (Ig= (1� �))
exp Ig
exp I

; (8)

where we use 9 nodes appropriately weighted by 'i.
8 Since our focus is not on numerical

integration error, we use the same set of nodes and weights to compute the market share in

the DGP and the estimation.

For each design and its associated 1,000 data sets, we use GMM to estimate the correctly

speci�ed model and the other, misspeci�ed models. In all cases we generate the set of instru-

ments from within the model, following Chamberlain�s (1987) approach as applied in Berry,

Levinsohn and Pakes (1999). Given the demand parameters � = (�; �; �), this instrument

vector is the expected value of @�jt(�)=@�
0. This includes the characteristics vector itself (xjt)

and nonlinear functions of the characteristics and the parameters. Finally, following the re-

cent literature we consider multiple starting values, a state-of-the-art optimization algorithm

(Knitro 8.0) and a tight inner loop contraction mapping.

8A relatively low numer of nodes is needed for accurate integration: with 9 nodes the unidimensional
market share integral is exact at accuracy level 17.
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Results set-up 1: RC model for discrete characteristic We specify RC models

with only a random coe¢ cient for the discrete characteristic djt, and no other consumer

heterogeneity. More speci�cally, we assume that the mean valuations are � = (�1;�2;�0:5),
the standard deviations are � = (0; 0; �d) and the nesting parameter is � = 0.9 We consider

10 designs for �d, varying over 0:5; 1; : : : ; 5.10 For each design and each of the 1,000 generated

datasets, we estimate both the correctly speci�ed RC model, and the misspeci�ed NL and

logit models. The RC and NL models only di¤er in the distributional assumptions regarding

consumer heterogeneity for the discrete characteristic djt (normal versus generalized extreme

value). This comparison thus enables us to assess to which extent � takes over the role of

�d, and whether the misspeci�ed NL model provides a good approximation for the price

elasticities of the correctly speci�ed RC model.11

Figure 1 plots the mean of the estimated � in the misspeci�ed NLmodels against the mean

of the estimated �d in the correctly speci�ed RC models, for the 10 di¤erent designs. There

is a clear increasing relationship between the estimated � and �d. The estimated nesting

parameter � thus captures the omitted random coe¢ cient �d. Furthermore, � is increasing

in �d at a decreasing rate. Hence, � remains in the unit interval even for high values of �d,

consistent with the assumptions of the NL model.

Table 1 shows more detailed estimation results for 2 of the 10 designs: limited consumer

heterogeneity for the discrete characteristic (�d = 1) and strong heterogeneity (�d = 5). The

top part shows the mean and standard deviation of the main parameters, as estimated from

the 1,000 generated data sets. We �rst look at the parameters for the correctly speci�ed RC

model. For both designs, the means of �x1 and �d are very close to the true parameters,

their standard deviations are fairly small, and the distribution is approximately normal (as

con�rmed by Q-Q plots, not shown). This con�rms that our estimation procedure, with a

state-of-the-art optimization algorithm, analytical derivatives, numerical integration, and a

tight inner loop contraction mapping works well in practice.12

Next, we consider the parameters of the misspeci�ed models. The price parameter �x1 is

9The choice of the mean valuations � is based on obtaining a realistic setting, in which the outside good
market share varies between 0.10 and 0.70 under the di¤erent data generating processes.
10We took the default values for the correlation between d�jt and x

1
jt, &xd = 0, and for the cut-o¤ point of

belonging to group 0 or 1,  = 0. We also experimented with di¤erent values of &xd and , and this gives
robust conclusions.
11We have also conducted the reverse group of experiments, i.e. we specify a NL model and compare the

estimates of the correctly speci�ed NL model with those of a misspeci�ed RC model. We use the same mean
valuation vector, and consider 10 designs for the nesting parameter, � = 0:10; 0:15; : : : ; 0:50. We obtain
comparable results, as reported in the Appendix B.
12Note that the nesting parameter � enters non-linearly in the choice probabilities. This may be another

source of multiple minima and sensitivity to starting values. However, in our GMM context, we did not �nd
the issue to be larger than in the models without �.
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close to the true value of �2 in the misspeci�ed logit model. In contrast, it appears to di¤er
signi�cantly from the true value in the misspeci�ed NL model, especially in the second design

with strong consumer heterogeneity (b�x1 = �1:16 > �2). However, this is entirely due to
the signi�cance of the nesting parameter �, which rescales all utility parameters. Indeed, the

rescaled price parameter �x1=(1� �) is very close to the true value of �2.
What do these �ndings imply for the estimated price elasticities? The middle part of

Table 1 shows that the own-price elasticities of the logit and NL models are very close to the

ones in the RC model (on average about -2.57 for all models). Furthermore, the cross-price

elasticities of the NL model are also quite close to those of the RC model, with stronger

substitution within than between groups (especially in the second design with �d = 5).

In contrast, the logit model yields symmetric substitution patterns. Hence, although the

NL model resulted in a biased price parameter, the nesting parameter � accounts for the

omitted �d, so that the bias in the cross-price e¤ects is very small. As expected, the NL

model especially improves on the logit model in the second design with strong consumer

heterogeneity (�d = 5).

Finally, we calculated the AIC and BIC model selection criteria, as developed in the

GMM framework by Andrews (1999). Most interestingly, in the design with limited consumer

heterogeneity (�d = 1), both selection criteria have di¢ culties to distinguish between the

misspeci�ed NL and the true RC model: they incorrectly pick the NL model as the true data

generating process in up to 26% of the 1,000 cases. In contrast, in the design with strong

consumer heterogeneity (�d = 5) both selection criteria correctly detect the RC model as

the true model in almost all cases.

Note that we also implemented the reverse Monte Carlo experiments, where the NL

model is the true data generating process, and the RC model is the misspeci�ed model

(reported in the Appendix B). We can draw analogous conclusions: the RC model captures

the asymmetric substitution patterns of the NL model quite well, with only minor di¤erences

because of di¤erent distributional assumptions. This �nding is consistent with McFadden

and Train (2000), who showed that any random utility model (so also a NL model) can be

approximated by a random coe¢ cients logit model.

To summarize, in contrast with the logit model a misspeci�ed NL model results in com-

parable asymmetric substitution patterns as the true RC model (and vice versa). In fact,

it is quite di¢ cult to formally distinguish between the NL and RC models for low levels

of consumer heterogeneity. Hence, when consumer heterogeneity mainly refers to a discrete

characteristic, the computationally tractable NL model may often be preferable to the RC

model (unless there are strong reasons to expect a speci�c functional form for the distribution

for consumer heterogeneity).
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Results set-up 2: RCNL model We now specify RCNL models with a random coe¢ -

cient for the continuous characteristic x1jt, and a nesting parameter � for the group dummy

variable. More speci�cally, we assume that � = (�1;�3;�2), � = (0; �x1 ; 0) and take var-
ious values for �.13 We consider 8 di¤erent designs according to three criteria. (i) We set

either �x1 = 1:0 and � = 0:3, or �x1 = 0:5 and � = 0:5: the �rst case is closer to an RC

model, whereas the second case is closer to a NL model. (ii) We also set the cut-o¤ point for

belonging to group 0 or 1 at either  = 0 or  = 1: in the �rst case both groups are equally

crowded, while in the second case group 0 is more crowded than group 1. (iii) Finally, we set

either &xd = 0 or &xd = 0:9: in the �rst case, the group dummy djt is not informative about

the continuous characteristic x1jt, while in the second case djt is very informative about x
1
jt.

For each design and each of the 1,000 generated datasets, we estimate the correctly speci�ed

RCNL model and the misspeci�ed models (RC with � = 0, NL with �x1 = 0 and logit with

� = �x1 = 0). These experiments enable us to see to which extent � takes over the role of

�x1 (and vice versa), and what this implies for the price elasticity estimates under a broad

variety of designs.

Table 2 shows detailed results for 1 of the 8 designs: �x1 = 0:5 and � = 0:5;  = 1; and

&xd = 0:9. We begin with this design because it best mimics our car data set: �rst, there

is relatively strong consumer heterogeneity for the group dummy (high �); second, more

products belong to group 0 than to group 1 (84% versus 16% of the products); and third, the

group dummy is quite informative for the continuous characteristic x1jt (probit regressions of

the group dummy on the continuous characteristic imply 88.4% correct classi�cations, where

group 0 tends to contain the low-price goods and group 1 the high-priced goods).

We �rst look at the parameter estimates of the correctly speci�ed RCNL model. The

means are very close to the true parameters, the standard errors are small, and the dis-

tribution is approximately normal (not shown). This again con�rms that our estimation

procedure works well in practice, also in the RCNL model where we used the modi�ed

contraction mapping.

The parameter estimates for the logit, NL and RC model give interesting results on the

e¤ects of estimating misspeci�ed models. The NL model, which imposes �x1 = 0, leads to an

upward bias of the mean valuation of x1jt and of the nesting parameter �: �x1 = �0:31 > �3
and � = 0:88 > 0:3. The RC model, which imposes � = 0, also results in parameter biases:

�x1 = �4:06 < �3 and �x1 = 1:30 > 1:0. Hence, the nesting parameter � and the standard
deviation �x1 partly take the role of the other omitted parameter.

What do these estimates imply for the substitution patterns? The own-price elasticities

13The choice of the mean valuations � is again based on obtaining a realistic setting for the outside good
market share, varying between 0.20 and 0.83.
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tend to be underestimated (in absolute value) in the logit and NL models; in the RC model,

they are relatively close to the estimates of the correctly speci�ed RCNL model. The cross-

price elasticities between products of the same group are underestimated in all misspeci�ed

models (logit, NL and RC). This con�rms the importance of accounting for all sources of

consumer heterogeneity (regarding the continuous variable and group dummy). Finally, the

cross-price elasticities between products of di¤erent groups are underestimated in the NL

model and overestimated in the RC model.14

These �ndings refer to 1 of the 8 designs (the design that is closest to our empirical

data set below). However, as we show in Table 3, our main conclusions remain across all

dimensions of the designs. The RC model estimates the own-price elasticities quite well (i.e.

close to the ones from the correctly speci�ed RCNL model), whereas the logit and NL model

tend to underestimate the own-price elasticities (but the NL model less so when the nesting

parameter is strong). Both the logit, RC and NL models underestimate substitution within

groups, since they do not capture all sources of consumer heterogeneity. The RC model

overestimates substitution between di¤erent groups, while the NL model underestimates it.

Despite these biases, the NL and RC models �nd stronger substitution within than between

groups, in contrast with the logit where substitution is entirely symmetric.15 These �ndings

will be con�rmed in the next sections, where we provide an empirical analysis of the car

market.

More generally, these �ndings stress the importance of accounting for unobserved con-

sumer heterogeneity regarding group dummy variables. But this does not mean that re-

searchers should necessarily estimate an RCNL model when they expect unobserved hetero-

geneity on group dummy variables. They may also specify an RC model with an additional

random coe¢ cient for the group dummy variable. To illustrate this, the Appendix provides

results from a Monte Carlo experiment with one random coe¢ cient on a continuous vari-

able and one on a discrete variable. We �nd that omitting the random coe¢ cient on the

discrete variable results in very similar biases as the earlier �ndings on omitting the nesting

parameter from the RCNL model.16

14Note that the AIC and BIC selection criteria now correctly detect the data generating process is the
RCNL model in all of the 1,000 generated data sets. Hence, they always lead to the conclusion that one
should account for both sources of heterogeneity (on the continuous characteristic and on the group dummy).
This di¤ers from our earlier set-up 1, where the selection criteria could often not distinguish between the
NL and RC model (because the group dummy was the only source of heterogeneity).
15The cross-price elasticities in the logit model do not appear to be entirely symmetric in the two lower

panels (designs 5�8, with  = 1). This is because one of the two groups is less crowded than the other. The
cross-elasticities are symmetric if one considers them at a more disaggregate level (e.g. average separately
for group 0 and 1).
16As a further check, we also compared the Monte Carlo results from the RCNL (last column of Table

2) with a RC model with two random coe¢ cients, i.e. one on the continuous variable and one on the
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3 Empirical analysis

3.1 Dataset for the European car market

We make use of a unique dataset on the automobile market maintained by JATO. The data

are at the level of the car model (e.g. VW Golf) and include essentially all passenger cars

sold during nine years (1998�2006) in nine West-European countries. This covers around

90% of the sales in the European Union. The countries are Belgium, France, Great Britain,

Germany, Greece, Italy, Portugal, Spain, and the Netherlands. For each model/country/year

we have information on sales, de�ned as total new registrations. For models introduced or

eliminated within a given year, we know the number of months with positive sales in the

given year. We exclude the models with extremely small market shares, e.g. Bentley Arnage

or Kia Clarus. This results in a dataset of 18,643 model/country/year observations or on

average about 230 models per country/year.

We combine the sales data with information on the list prices and various characteristics

referring to the base model: vehicle size (curb weight, width and height), engine attributes

(horsepower and displacement) and fuel consumption (liter/100km or e/100 km). We start

from JATO�s classi�cation to assign each model to one of seven possible marketing segments:

subcompact, compact, intermediate, standard, luxury, SUV and sports. Furthermore, we

assign the models to their brands�perceived country of origin. For example, the Volkswagen

Golf is perceived of German origin even if produced in Spain. We construct a dummy

variable for whether a model is of foreign or domestic origin in each country. Our two-level

nested logit model will use the marketing segments and foreign origin dummy to de�ne the

groups (e.g. subcompact) and subgroups (e.g. domestic subcompact, foreign subcompact).

Table 4 provides summary statistics for sales, price and the product characteristics used

in our empirical demand model. We show the summary statistics for all countries and for

France and Germany separately (since we will focus on these countries when we present our

counterfactuals).

Since our empirical analysis will focus on comparing the nested logit and random coef-

�cients logit models, it is informative to provide background on how the continuous char-

acteristics relate to the marketing segments. Table 5 (top panel) shows summary statistics

for our four characteristics by marketing segment. Cars belonging to the same marketing

segment tend to have similar horsepower, fuel consumption, width, and height. Horsepower

discrete variable. This model is �misspeci�ed� since it has di¤erent distributional assumptions about the
discrete variable than the RCNL model. But the implied own-price and cross-price elasticities are very close
(respectively -5.727, 0.114, 0.064, compared with -5.344, 0.112 and 0.054 for the RCNL model in Table 2).
This generalizes our �ndings in the simpler set-up of Table 1.

14



and fuel consumption show a higher dispersion within a segment than width and height, but

their segment averages also vary more widely. For example, average horsepower varies from

48.7kW in the subcompact to 134kW in the luxury segment, whereas average width varies

from 162.5cm in the subcompact to 182.3 in the luxury segment. Table 5 (bottom panel)

summarizes how well the four characteristics predict to which segment each model belongs.

For each segment pair (e.g. subcompact�compact) we estimate a probit explaining segment

assignment as a function of the four characteristics, and we ask how often the probit correctly

classi�es the di¤erent car models. The table shows that the continuous variables predict the

SUV extremely well, with over 95% correct classi�cations with respect to any other segment.

Classi�cation is also quite accurate for most other segments, for example for the luxury seg-

ment there are over 89% correct classi�cations with respect to any other segment. The lowest

number of correct classi�cations occurs for a few �neighboring segments�(on the diagonal),

e.g. 76.6% correct classi�cations between compact and intermediate, 77.9% between inter-

mediate and standard. But even in these instances the characteristics predict the segments

quite well.

In sum, this preliminary evidence indicates that a limited number of characteristics

(horsepower, fuel consumption, width and height) have quite good, but not perfect pre-

dictive power for the classi�cation in marketing segments. We will bear this in mind when

comparing the NL and RC models.

3.2 Speci�cation

To estimate the logit, NL, RC and RCNL demand models we make three modi�cations to the

framework discussed in section 2. First, we treat price separately since it is an endogenous

characteristic and since we allow its random coe¢ cient to follow the empirical distribution

of income. We adopt the following variant of the above utility speci�cation (1):

uijt = xjt�i � �ipjt + �jt + "ijt:

The vector of observed product characteristics, xjt, includes horsepower, fuel e¢ ciency,

width, height and a dummy variable for the product�s country of origin (domestic or for-

eign). The corresponding random coe¢ cients are speci�ed as before, i.e. �ik = �k + �k�ik
for characteristic k. Price pjt enters slightly di¤erently: its random coe¢ cient is speci�ed as

�i = �=yi, where yi is the income of individual i. In the RC and RCNL model we treat yi as

a random variable with a known distribution equal to the empirical distribution of income.

In the NL model we treat yi as non-random and set it equal to mean income in market t,

yi = yt. In sum, for the non-price characteristics we estimate both the mean valuations
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�k and the standard deviations �k; for price we only estimate � so that heterogeneity in

willingness to pay follows the empirical distribution of income.17

Second, the product-speci�c taste parameter "ijt follows the distributional assumptions

of the two-level nested logit model, instead of the one-level nested logit of section 2. The

upper level consists of the above seven di¤erent market segments (subcompact, compact,

standard, intermediate, luxury, SUV and sports) and one separate segment for the outside

good. The lower level divides every segment in two subsegments according to the models�

country of origin (domestic or foreign). In four countries there are only foreign cars, so the

subsegments of domestic cars are empty (Belgium, Greece, Portugal and the Netherlands).

There are now two nesting parameters, � = (�1; �2). The nesting parameter �1 measures

correlation of preferences across cars of the same subsegment, and �2 measures correlation

of preferences across subsegments of the same segment. For the model to be consistent with

random utility maximization, 0 � �2 � �1 < 1. If �1 = �2, the model reduces to a one-level
nested logit where the segments are the nests; if �1 > �2 = 0, the model reduces to a one-level

nested logit where the subsegments are the nests. If �1 = �2 = 0, the model reduces to a

simple logit. Assuming that consumers choose the product that maximizes utility, we obtain

a two-level nested logit version of the aggregate market shares (6).

Third, we exploit the panel features of our data set to specify the error term as �jt =

�j + �t + ��jt. The �j are product �xed e¤ects, capturing time-invariant unobserved char-

acteristics for a car model j. The �t are market �xed e¤ects, modelled as country-speci�c

�xed e¤ects interacted with a time trend and squared time trend. These capture general

country-speci�c demand shocks relative to the outside good.18 Finally, ��jt is the residual,

capturing remaining unobserved product characteristics, varying across products and mar-

kets. Since our data are at the annual level, we also include a set of dummy variables for

the number of months each model was available in a country within a given year (for models

introduced or dropped within a year).

3.3 Identi�cation and estimation

To estimate the demand parameters � = (�; �; �; �), we follow Berry (1994), BLP and the

subsequent literature. As discussed above, we solve the system st = st(�t; �) for �t in each

17This utility speci�cation approximates BLP�s Cobb-Douglas speci�cation � ln(yi � pj) when the price
is small relative to (capitalized) income. It is particularly convenient when studying countries with di¤erent
exchange rates, since local price is simply expressed relative to local income; see Goldberg and Verboven
(2001).
18We set the potential number of consumers Lt as the number of households in the market. Alternative

assumptions on Lt are absorbed in the market �xed e¤ects and do not have an important impact on the
results, as we discuss below.
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market t, to obtain a solution for the error term ��jt for each product j = 1; : : : ; J in market

t:

�jt(st; �; �; �) = xjt� + �j + �t +��jt: (9)

In the (two-level) NL model the left-hand side has an analytic solution,

�jt(st; �; �; �) = ln sjt=s0t � �1 ln sjjhgt � �2 ln shjgt + �pjt=y; (10)

so that a linear estimator can be used. In the RC and RCNL model �jt(st; �; �; �) should

be computed numerically by solving the system st = st(�t; �) for �t, which makes estimation

considerably more complex.

For all models, we can proceed with GMM by interacting the error term with a vector of

instrumental variables zjt that is uncorrelated with the error term. Since there are 2K + 3

parameters (K mean valuations �k, K standard deviations �k, the price parameter � and

the two nesting parameters �1 and �2), we need at least 2K + 3 instruments in zjt. Price

pjt does not qualify as an instrument to identify the price e¤ect, since it is likely to be

correlated with ��jt. For example, a positive demand shock for product j in market t

will not only increase the demand for the product, but it may also induce the �rm to

raise its price. Failure to account for this endogeneity issue will lead to an estimated price

coe¢ cient (�) that is downward biased.19 Our identi�cation assumption is that the observed

product characteristics xjt are uncorrelated with the unobserved product characteristics��jt
(which is weaker than the often adopted assumption that xjt is uncorrelated with �jt). As

discussed in BLP, one may use alternative functions of these characteristics as instruments to

estimate the 2K +3 parameters. More speci�cally, following previous practice, our vector of

instrumental variables zjt includes: (i) the vector of product characteristics xjt; (ii) the sum

of the characteristics of other products of competing �rms, (iii) the sum of the characteristics

of other products of the same �rm. For the NL and RCNL model we also include these sums

over products belonging to the same subsegment and segment, following Verboven (1996).20

The GMM objective function includes a weighting matrix to account for heteroskedas-

ticity (obtained from the residuals using a two-step procedure). To minimize the GMM

objective function with respect to the parameters � = (�; �; �; �) we �rst concentrate out

the linear parameters � (which includes a set of dummy variables for the market �xed e¤ects

�t). We do not directly estimate the more than 200 car model �xed e¤ects �j, but instead

19In the linear NL model, the within-subgroup and within-group market shares ln sjjhgt and ln shjgt
evidently also do not qualify as instruments to identify the nesting parameters �1 and �2 (just like functions
of market shares would not qualify as instruments for the distributional parameters � in the RC model).

20Weak instruments tests show that the instruments are jointly signi�cant.
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we use a within transformation of the data (Baltagi, 1995). Standard errors are computed

using the standard GMM formulas for asymptotic standard errors.

A few recent papers have studied several numerical di¢ culties with estimating the RC

model (which also apply to the RCNL model): global convergence problems and the role

of starting values and di¤erent optimization algorithms (Knittel and Metaxoglou, 2008),

problems with numerically solving �t using BLP�s contracting mapping (Dubé, Fox and

Su, 2012), and problems with approximating the integral over the logit probabilities using

simulation (Judd and Skrainka, 2011).

We draw lessons from this recent literature and proceed as follows. First, to approximate

the high-dimensional integral (6), we make use of a large number of Halton draws over the

density N(0; 1). This provides a more e¤ective coverage of the density domain than pseudo-

random draws. In particular, we take a large number of 500 Halton draws for each of the

81 markets (country/years).21 Second, to ensure the GMM objective function is smooth,

we use a tight tolerance level of 1e�12 to invert the shares using our modi�cation of BLP�s

contraction mapping (7). This tolerance level is considerably stricter than typically used

in the literature. Third, we program analytic derivatives of the gradient of the objective

function. While this is particularly tedious for the RCNL model, it greatly improves accuracy

and computation time. Finally, even if the GMM objective function is smooth, it may not be

globally convex. To minimize the function with respect to the nonlinear parameters (�; �; �),

we use di¤erent starting values, using a stringent convergence criterion of 1e�6 and carefully

examining the gradient the solution path and the Hessian eigenvalues. We use a BFGS

algorithm, which is an e¢ cient procedure that uses information at di¤erent points to obtain

a sense of the curvature of the objective function. We usually obtain the same optimum,

except for very high or low starting values but in these cases the value of the objective

function at convergence is always higher.22

3.4 Parameter estimates

Table 6 shows the parameter estimates for the four di¤erent demand models. The logit model

imposes � = � = 0 and yi = yt. The NL model assumes � = 0 and yi = yt and estimates �.

The RC model assumes � = 0, estimates � and allows yi to follow the empirical distribution

of income. Finally, the RCNL estimates both � and �, and allows yi to follow the empirical

21Halton draws can be very e¤ective compared to pseudo-random draws. For example, ? and Train (2000)
report that the simulation variance in the estimated parameters is lower with 100 Halton draws than with
1000 pseudo-random draws.
22The log condition number of the Hessian matrix is, at worst, 1.9, which means that only 2 (of a total

of 16) decimal places of accuracy are being lost in the calculation of the Hessian, thus suggesting accurate
results.
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distribution of income.

In the simple logit model both the price parameter (�) and the mean valuation para-

meters (�) have the expect signs and are all signi�cantly di¤erent from zero. However, as

is well-known, the model is very restrictive since it imposes symmetric cross-price elastic-

ities. Furthermore, demand is inelastic for almost 20% of the car models across countries

and years. This is inconsistent with oligopolistic pro�t maximizing behavior unless marginal

costs would be negative.

In the NL model the upper nest level consists of the seven marketing segments and the

lower nest level consists of the segments and origin (domestic/foreign). The price parameter

(�) and the mean valuation parameters (�) again have the expected sign and are signi�cantly

di¤erent from zero, with the exception of the parameter for width, which is now insigni�cant.

The nesting parameters are estimated very precisely, �1 = 0:65 and �2 = 0:48. Their magni-

tudes are consistent with the requirements of random utility maximization (0 � �2 � �1 < 1)
and imply that consumer preferences show the strongest correlation across cars from both the

same marketing segment and origin (domestic/foreign), and show weaker but still important

correlation across cars from the same segment but a di¤erent origin. This is consistent with

earlier work for a more limited set of countries (Goldberg and Verboven, 2001 and Brenkers

and Verboven, 2006).23 As documented below, this implies more plausible cross-price elastic-

ities than the simple logit model. Furthermore, the implied own-price elasticities are higher

than in the simple logit: demand is now inelastic for only 3% of the car models. This may

seem surprising at �rst, since the price coe¢ cient � is closer to zero than in the simple logit

model. However, the elasticities do not only depend on � but also on the nesting parameters

�1 and �2.

In the RC model we estimate the price parameter (�) and the means (�) and standard

deviations (�) for the valuations of the other characteristics (including the constant). The

price parameter (�) is again signi�cantly estimated with the expected sign (negative e¤ect).

Consumers have a negative and signi�cant mean valuation for fuel consumption, and hetero-

geneity is limited so that almost all consumers dislike fuel ine¢ cient cars. Consumers have

a positive and signi�cant mean valuation for width, and the standard deviation implies that

about 10% of consumers dislike large cars. Consumers have a negative mean valuation for

cars from foreign origin. The standard deviation is relatively large, so that 25% of consumers

actually prefer foreign cars. The mean valuation for height is insigni�cantly di¤erent from

zero, and the mean valuation for horsepower is unexpectedly negative. However,for both

23We also estimated a two-level NL model with the reverse nesting structure, where origin de�nes the
upper level and origin/segment the lower level of the nests. This led to estimates of �1 and �2 inconsistent
with random utility maximization, in line with the results of other studies on the car market.
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characteristics we �nd substantial and signi�cant heterogeneity: about 50% of consumers

have a positive valuation for height and about 30% have a positive valuation for horsepower.

Finally, we estimate a signi�cant standard deviation for the constant, indicating there is

signi�cant heterogeneity in the valuation of new cars relative to the outside good. Over-

all, the random coe¢ cients show evidence of signi�cant consumer heterogeneity in several

dimensions, in particular height, horsepower and foreign origin. Yet it is striking that the

random coe¢ cients are estimated much less precisely than the two nesting parameters in the

NL model.

In the RCNL model we combine the previous two models, so we include both the nest-

ing parameters and the random coe¢ cients. Both the price parameter (�) and the mean

valuation parameters (�) have the expected signs and are estimated signi�cantly with the

exception of the horsepower parameter, which is insigni�cant. The most interesting �ndings

relate to the estimated nesting parameters (�) and random coe¢ cients (�) in comparison

with the NL and RC models.

First, compared with the NL model, the nesting parameters remain highly signi�cant, but

their magnitude becomes smaller. This is consistent with the results from our Monte Carlo

study, where we found an overestimate of the nesting parameters if the random coe¢ cients

are important and the groups are correlated with the characteristics for the omitted random

coe¢ cients. Furthermore, we can no longer reject the hypothesis that �1 = �2 (P-value

0.0967) and the random coe¢ cient for foreign origin is insigni�cant. So the model reduces

to a one-level nested logit with no need to divide the seven segments into domestic and

foreign subgroups, and it seems at �rst that there is no longer consumer heterogeneity for

foreign origin. However, the subsegment parameter �1 captures similar e¤ects as the random

coe¢ cient for foreign origin, suggesting it is not sensible to include both. Indeed, in a one-

level nested logit where we constrain �1 = �2 (so that the subgroups are no longer relevant),

the random coe¢ cient for foreign origin becomes signi�cant again (as in the RC model). We

show these results in the Appendix B.24

Second, compared with the RC model, the random coe¢ cients for horsepower and fuel

e¢ ciency remain signi�cant, but this is no longer the case for width, height and the constant.

Intuitively, the nesting parameter for the segments captures a lot of the heterogeneity relating

to the car dimensions and the outside good, but not much of the heterogeneity relating to

horsepower and fuel e¢ ciency.

24In this case, the one-level nested logit with a random coe¢ cient for foreign origin seems preferable to a
two-level nested logit model, since it does not impose the consumer heterogeneity to enter in a hierarchical
way. Nevertheless, we base our subsequent discussion on the two-level nested logit. The implied price
elasticities and competition policy counterfactuals are very similar in the one-level nested logit model (not
shown).
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Since the logit, NL and RC are all restricted versions of the RCNL model, we can compare

their statistical performance using likelihood ratio tests adapted to the GMM context.25

Table 7 reports LR values and asymptotic P-values for all pairs of models, except the NL

and RC which are not nested in each other. Each restricted model is rejected against the more

general models. The logit is clearly rejected against any other model. More interestingly, both

the NL and RC models are rejected against the more general RCNL model. In fact, the NL

appears to provide a better �t than the RC logit relative to the RCNL, since the �2 statistic

is lower for the NL than the RC model (30.61 versus 423.84). We already observed above

that the individual random coe¢ cients in the RC model are much less precisely estimated

than the two nesting parameters in the NL model. The likelihood ratio tests thus indicate

that the random coe¢ cients of the RC model are also jointly less signi�cant than the nesting

parameters of the NL model.

Summary We can summarize our empirical results in the following four points. (i) It is

important to include the nesting parameter relating to the seven marketing segments since

it remains highly signi�cant after including the random coe¢ cients. (ii) It does not seem

appropriate to include an additional subnesting parameter relating to the origin within each

segment, since the random coe¢ cient for origin captures this well. (iii) It is relevant to in-

clude random coe¢ cients for horsepower and fuel e¢ ciency, but not those for the dimensions

width and height since these are captured well by the marketing segments. (iv) It is striking

that the nesting parameters (re�ecting heterogeneity regarding segments and subsegments)

are estimated much more precisely than the random coe¢ cients (re�ecting heterogeneity

regarding continuous characteristics). While these �ndings apply to our dataset of the Euro-

pean car market, they can be useful as a guide for interpretations also in other applications.

We have done various sensitivity analyses to assess the robustness of these conclusions. We

added a random coe¢ cient for the continuous characteristic weight, or dropped the random

coe¢ cient for height. In both cases, the magnitude and signi�cance of the nesting parameter

for the segments is hardly a¤ected.26 We also estimated a model with an additional upper

25Following Hayashi (2000), we de�ne the likelihood ratio statistic (LR) as the di¤erence between the
value of the objective function of the restricted model (re-estimated using the second-stage weighting matrix
of the unrestricted model) and the value of the objective function of the unrestricted model. Under the null
hypothesis, the statistic is asymptotically �2 distributed with degrees of freedom equal to the number of
restrictions.
26Adding random coe¢ cients raises the computational burden of approximating the market share integral,

and makes it more di¢ cult to identify the standard deviations of the individual random coe¢ cients. To reduce
the number of random coe¢ cients, we also conducted a principal components analysis before estimating the
model. We �nd that there are two main principal components: the �rst is closely related to the performance
and size variables; the second is closely related to the sports aspect (acceleration and height). We estimate
a strongly signi�cant random coe¢ cient for the �rst principal component, and a less signi�cant one for the
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nest to distinguish the three lower class segments (compact, compact and standard) from

the other four segments. We did not �nd this to be an additional source of segmentation.

In sum, this suggests that the segments capture a separate, unobserved source of market

segmentation. In principle, this may be captured without imposing a nested logit structure,

through random coe¢ cients on the segment dummies with another distribution (e.g. normal

as for the continuous variables). This would however substantially increase the computational

burden.

3.5 Substitution patterns

We have already commented on the number of inelastic own-price elasticities implied by our

estimates. We now provide a more systematic discussion on the substitution patterns. We

consider own-price and cross-price elasticities at the level of the individual products and at

the level of the entire segments.

Product-level price elasticities First consider the product-level own- and cross-price

elasticities. We average these by segment, and distinguish between cross-price elasticities

with respect to other products in the same subsegment, in a di¤erent subsegment within the

same segment, and in a di¤erent segment. Table 8 shows these average product-level elas-

ticities for Germany in 2006 (the largest country in the most recent year of our dataset). In

the logit and NL model the own-price elasticities tend to increase more or less proportionally

with price as one moves to higher segments, resulting in an average own-price elasticity that

is almost 4 times higher in the luxury than in the subcompact segment. The near propor-

tional relationship follows from the functional form assumption: price enters utility linearly

with a homogeneous valuation across consumers (��=yt). In contrast, in the RC and RCNL
models the price elasticities increase much less than proportionally, by a factor of 2.2 and

2.3 in the respective models. This follows from the less restrictive functional form: price

still enters utility linearly, but consumer valuations are heterogeneous (��=yi). Hence, price
insensitive consumers are more likely to purchase high priced cars.

The cross-price elasticities show even more striking di¤erences across the estimated mod-

els. In the logit model, they are extremely small even with respect to cars from the same

subsegment or segment (always <0.01). In contrast, in the NL and RCNL models the cross-

price elasticities are quite high with respect to products of the same subsegment (about

0.1�0.4) and they are still relevant with respect to products of other subsegments in the

same segment (about 0.05). In the RC model, the cross-elasticities with respect to products

second component.
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of the same subsegment are still sizeable, mainly because of the magnitude and signi�cance

of the foreign ownership random coe¢ cient. But they are negligible with respect to products

of other segments within the same segment (usually <0.01). These �ndings illustrate the

importance of accounting for consumer heterogeneity relating to the marketing segments (as

done only in the NL and RCNL models) and the domestic/foreign origin (as done in all

models except the simple logit).

Segment-level price elasticities Now consider the segment-level price elasticities, i.e.

the e¤ect of a joint 1% price increase of all cars in a given segment on demand in the various

segments. Table 9 reports these segment-level own- and cross-price elasticities. We can

summarize these results as follows. First, as is well-known, both the logit and NLmodel imply

fully symmetric substitution patterns at the segment-level (i.e. identical cross-elasticities per

row). For example, a price increase of all compact cars by 1% raises the demand in all other

segments by 0.02% (more precisely, by 0.017%). In sharp contrast, the RCmodel implies more

intense substitution to �neighboring segments�. Taking the same example, a price increase

of all compact cars by 1% has the highest e¤ect on the demand for subcompact (+0.76%)

and intermediate cars (+0.66%), and lowest e¤ects on the demand for luxury (0.26%) and

SUV cars (+0.39%). Finally, the RCNL model implies cross-price elasticities somewhere in

between the NL and RC model, though closer to the NL model: the cross-price elasticities

to other segments are fairly (but not completely) symmetric, and they are somewhat higher

than in the NL model, but not nearly as high as in the RC model.

We stress that, even though the substitution patterns of the most general RCNL model

appear to be better approximated by the NL model than by the RC model, this does not

necessarily mean that the NL model should be preferred over the RC model. The main

message is that it is important to account for consumer heterogeneity regarding the marketing

segments. The NL model is one simple way to capture this, but there may be alternative

ways. For example, one may consider adding random coe¢ cients for the segments at an

increased computational cost.

Summary We can summarize the di¤erences in the estimated substitution patterns across

models as follows. First, the own-price elasticities at the product level increase roughly

proportionally with price in the logit and NL model, but less than proportionally in the RC

and RCNL model. This is because the latter two models allow for consumer heterogeneity

in the price parameter. Second, the product-level cross-price elasticities show that products

of the same segment are strong substitutes in the NL and RCNL model, but not in the logit

and RC models. Finally, the segment-level cross-price elasticities show that there is quite
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strong substitution across segments (especially the neighboring ones) in the RC model, but

only weak (and symmetric) substitution in the logit, NL and RCNL models.

4 Implications for competition policy analysis

The previous section showed how the di¤erent demand models generate quite di¤erent sub-

stitution patterns. But how relevant are the found di¤erences for applications in industrial

organization or related �elds? To address this question, we consider two areas of competition

policy, market de�nition and merger simulation, and we ask whether the di¤erent demand

models yield robust conclusions.

Much of competition policy still heavily relies on market de�nition and an assessment

of the �rms�market shares within the de�ned market. It is simple and widely applicable

to mergers and horizontal or vertical agreements because it makes few assumptions about

oligopoly behavior. However, the choice of candidate relevant markets can often be quite

arbitrary and arti�cial. Furthermore, because it is not based on a speci�c model of oligopoly

behavior, it cannot make precise predictions about market power e¤ects, and it cannot in-

corporate other considerations in an integrated framework. In merger cases, one increasingly

resorts to simulation analysis to assess market power e¤ects and incorporate e¢ ciencies or

other elements; see e.g. Werden and Froeb (1994), Hausman, Leonard and Zona (1994), Nevo

(2000) and Peters (2006). While merger simulation may in principle extend to other types

of competition investigations, this is di¢ cult in practice because it requires the speci�cation

of an appropriate oligopoly model for the speci�c competition issue under investigation.

These relative advantages and disadvantages of market de�nition and merger simulation

have been widely discussed. We will instead look at this from a di¤erent angle: we ask to

which extent both approaches are sensitive to the adopted demand model. If one approach

gives more robust conclusions across demand models, this provides a new motivation to

prefer it over the other approach.

4.1 Market de�nition

Market de�nition in the European car market is not only relevant for the evaluation of

mergers, but also for the implementation of the Block Exemption Regulation for the selective

and exclusive distribution system. According to this Regulation, automobile manufacturers

may impose selective or exclusive distribution to their dealers, provided they have market

shares below 30% or 40%. Some niche manufacturers such as Mercedes or BMW may meet

these thresholds if markets are de�ned widely to include all cars, but not if they are de�ned
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narrowly. Hence, it is important to know the size of the relevant markets.

According to the SSNIP test, the relevant market is the smallest group of products

for which a hypothetical monopolist could pro�tably impose a small, non-transitory but

signi�cant increase in price (typically 5%-10%). Since the pro�tability of a price increase

depends on the extent of substitution to other goods, the estimated demand model is of

central importance. For each of the four estimated demand models, we �rst compute all

products�implied marginal costs assuming multiproduct price-setting �rms (following BLP,

Nevo, 2000 and others). Given the estimated demand systems and the marginal costs, we

then ask whether a 10% price increase by all products in a candidate relevant market raises

pro�ts.

We begin with considering the marketing segments as the candicate relevant markets.

Table 10 (Panel A) shows the SSNIP-test results for France and Germany in 2006. The logit

model suggests that none of the seven marketing segments can be considered as separate

relevant markets. For example, a joint 10% price increase in the compact segment in France

reduces pro�ts by 0.6%. The RC model yields a similar conclusion: only the subcompact

segment can be de�ned as a relevant market in both France and Germany. In sharp con-

trast, the NL and RCNL model result in higher and positive pro�t e¤ects, implying that

all marketing segments constitute separate relevant markets. A joint 10% price increase in

the compact segment in France would raise pro�ts by 7.21% according to the NL model and

even by 10.84% according to the RCNL model. This narrow market de�nition follows, of

course, from the high signi�cance of the nesting parameter for the segments in the NL and

RCNL models.27

Should we conclude that the RCmodel fails to de�ne the markets narrowly at the segment

level, in contrast with the more general RCNL model against which it was rejected? The

answer may seem to be yes, since we found that the RCmodel omits important unobservables

relating to the marketing segments that are captured in the more general RCNL model.

However, proper caution is warranted. First, the RCNL model is itself restrictive since

it imposes largely symmetric substitution across the segments. As an alternative to the

RCNL model, one may also include random coe¢ cients for segment dummies within an RC

framework (at an increased computational cost, since it requires approximating a higher

dimensional market share integral). Second, even an RC model without random coe¢ cients

on segment dummies may result in a more narrow market de�nition if we do not restrict

27Market de�nition may be sensitive to the de�nition of the potential market size. Recall that we speci�ed
the potential number of consumers Lt as the number of households. We re-estimated the demand models by
scaling Lt up or down by a factor of 2 or 4. The SSNIP test conclusions are robust: the logit and RC model
still predict a wide market de�nition, while the NL and RCNL model predict the reverse. To illustrate, we
report the SSNIP test results for Lt=2 in the Appendix B.
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attention to segments as candidate relevant markets, but instead consider the set of nearest

substitutes (which are more likely to include products from other segments in an RC model).

To assess this second possibility, we considered candidate relevant markets according to

the products�ten closest substitutes, based on the estimated cross-price elasticities for the

four di¤erent demand models. Table 10 (Panel B) implements this for seven representative

products, the top selling cars in Germany in each segment, e.g. the VW Golf in the compact

segment or the Audi A4 in the standard segment. As may be expected, for the NL and RCNL

these ten closest substitutes almost always come from the same segment. In contrast, for the

RC model they often come from other segments since the model does not explicitly account

for segments as a source of di¤erentiation.28 Interestingly, despite the fact that we now

include closer substitutes in the RC model, the conclusions from Panel B remain similar to

those in Panel A. The relevant market is not wider than each product�s ten closest substitutes

under the NL and RCNL model, while it is always wider under the logit model. Under the

RC model, it is also usually wider, though there are two exceptions: for the VW Polo the

relevant market is as narrow as its ten closest substitutes in both France and Germany; for

the VW Golf the relevant market is also narrow in Germany, though it is wider in France.

We also computed the minimum number of closest substitutes to form a separate relevant

market for the four di¤erent demand models. In general, we found that the fewest number

of products has to be included for the NL and RCNL model (about 5 to 10 vehicles), a

larger number for the RC model (about 10 to 15 vehicles) and the largest for the simple logit

model.

In sum, when we use the closest substitutes as a selection criterion for de�ning candidate

markets, the RC model results in a more narrow market de�nition than when we use the

segment criterion, but it is still wider than the market de�nition in NL and RCNL models.

This does not mean that the RC model necessarily leads to a wider market de�nition than

the NL or RCNL model. It just stresses the importance of incorporating su¢ cient sources

of heterogeneity in the RC model, in particular random coe¢ cients for the segments. The

nesting parameters are one way to achieve this, but within an RC model it is also possible

to make other distributional assumptions.

In practical terms, using closest substitutes to de�ne markets may become tedious, es-

pecially in terms of presenting unambiguous, non-overlapping market de�nitions in com-

petition cases. As a simpler alternative, one may de�ne two neighboring segments as the

relevant market in the RC model (as suggested by the above cross-price elasticities). Our

28To illustrate, the Appendix B reports the ten closest competitors for the VW Golf for each estimated
demand model. In the logit model the closest competitors are simply the top selling cars, in the RC model
they are cars with similar characteristics which may come from di¤erent segments. In the NL and RCNL
model, the ten closest competitors all come from the same segment (with one exception).
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SSNIP-test results at the level of neighboring segments (not shown) demonstrate that two

neighboring segments still do not form relevant markets in the logit model, but they do form

relevant markets in the RC model: a joint 10% price increase would raise pro�ts for e.g.

compact+intermediate (+1.6%) but not for, e.g., compact+luxury (�1.2%).

4.2 Merger simulation

We consider the e¤ects of two hypothetical mergers. The �rst merger is between the two

French manufacturers PSA (Peugeot and Citroën) and Renault, and the second merger is

between the two German manufacturers BMW and Volkswagen (Volkswagen, Audi, Seat

and Skoda). As shown in Table 11, PSA and Renault are strong in their home market

France, with a combined market share of 56% (mainly due to the mass segments). BMW

and Volkswagen are slightly less strong in their home market Germany, with a combined

market share of 41%. But they have a particularly strong presence in speci�c segments, i.e.

the standard segment (71%) and the luxury segment (58%).

We �rst compute the products�marginal costs assuming multiproduct price-setting �rms,

as we also did to implement market de�nition. Given the estimated demand systems and

the marginal costs, we then predict the new Nash equilibrium resulting from the changed

ownership structure after the merger. Intuitively, a merger will entail high price e¤ects if the

merging �rms sell close substitutes with respect to each other (low cross-price elasticities)

and weak substitutes with respect to outsider �rms (low own-price elasticities).

Table 11 shows the predicted price e¤ects of the two mergers in the �rms�home markets.

We also brie�y comment on the e¤ects in the foreign markets, and show these results in the

Appendix B. We show the percentage price increases both for the entire market and for each

of the seven marketing segments (using price indices, where postmerger market shares are

the weights).

For both mergers, the logit model predicts very small domestic price e¤ects, despite

the merging �rms� strong domestic market presence. In sharp contrast, the NL, RC and

RCNL models give more robust conclusions. The PSA�Renault merger would result in large

aggregate price increases in France (between 8.3% and 20.2%). The overall predicted price

increases are most close for the NL and RC model (15.5% and 20.1%). They are somewhat

lower for the RCNL model (20.2%), but the con�dence intervals still overlap (as shown

in Appendix B). The BMW�VW merger entails more modest price increases in its home

country Germany, but the results are again robust across all models except the logit model

(between 1.9% and 3.0%). In particular, the predicted price increases are the largest in the

standard segment, where the German producers have the strongest presence (between 4.9%
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and 10.0%). While the NL, RC and RCNL all give fairly robust conclusions regarding the

predicted merger e¤ects, the NL model gives more precise predictions than the RC model

(as shown by the smaller con�dence intervals in Appendix B). The predictions from the RC

model consequently also show more sensitivity under alternative speci�cations.29

The predicted price e¤ects in the foreign markets are much smaller (shown in Appendix).

But there is again a notable di¤erence between the logit model and the other three models

(where the predicted e¤ects are between 0.4% and 0.6% for the BMW�VWmerger in France,

and between 0.2% and 0.4% for the PSA�Renault merger in Germany).

In sum, from a practical perspective these �ndings show that it is clearly inappropriate

to use a simple logit model with its symmetric substitution patterns. The merger predictions

from the NL, RC or RCNL model are broadly consistent, although the con�dence inter-

vals are higher in the RC model (so that they are also more sensitive to variations in the

speci�cation).

4.3 Summary

We can summarize our �ndings on market de�nition and merger simulation as follows.

Merger simulation yields fairly clear conclusions across di¤erent demand models: the simple

logit model is clearly inappropriate, but a generalization to the NL, RC or RCNL gives fairly

robust conclusions (though less precise for the RC model). In contrast, market de�nition

depends more heavily on the adopted demand model. In particular, the RC model suggests

a wider market de�nition than the NL and RCNL models, which directly incorporate the

segments as a segmentation source.

5 Conclusion

We started from an aggregate RCNL model to provide a systematic comparison between the

simple logit and NL models and the computationally more complex RC model. We �rst used

simulated data to document parameter biases from estimating a NL or RC model. We then

use data on the automobile market to estimate the di¤erent models, and as an illustration

assess what they imply for competition policy analysis. Our main �ndings on the advantages

and disadvantages of the NL and RC model can be summarized as follows.

In terms of the statistical performance, both the NL and the RC model are rejected

against the RCNL model. The NL model appears to be less strongly rejected (much lower

29As mentioned, as alternative speci�cations we dropped the random coe¢ cient for height, and added one
for weight. This results in lower predicted price e¤ects in the RC model, but the patterns across the di¤erent
segments remain comparable (see Appendix).
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�2) than the RC model, and the nesting parameters of the NL model (�) drop by only a

modest amount after including random coe¢ cients on continuous variables (�) in the RCNL

model. Furthermore, the nesting parameters are estimated more precisely than the random

coe¢ cients. This shows that the marketing segments capture an important, separate source

of unobserved consumer heterogeneity. In principle, this could be captured with random

coe¢ cients in the RC model, but this would come at an increased computational burden.

In terms of substitution patterns, the NL and RC model yield quite di¤erent results.

The own-price elasticities increase nearly proportionally with price in the NL model and

less than proportionally in the RC model, because the latter model allows for consumer

heterogeneity in the price parameter. Furthermore, products within the same segment are

much closer substitutes in the NL model, whereas there is strong substitution to other

segments (especially to neighboring ones) in the RC model.

Despite the rather di¤erent substitution patterns the NL and RC model generate quite

robust conclusions on the predicted price e¤ects from mergers. In sharp contrast, the conclu-

sions for market de�nition are not robust: markets are de�ned more narrowly in the NL and

RCNL model than in the RC or logit model. This suggests two implications for competition

policy. First, in market de�nition it is important to directly account for the segment dum-

mies as direct sources of market segmentation. Second, in merger simulation the conclusions

are more robust across demand models, suggesting the simple NL model can be su¢ cient to

obtain reliable policy conclusions, despite the di¤erent substitution patterns.

More generally, one can draw two implications for the choice of demand model in ap-

plied work. First, the choice between the tractable NL model and the computationally more

complex RC model may depend on the application. In our merger analysis we considered

two domestic mergers. In this case, a particularly relevant aspect of consumer heterogeneity

is the cars�domestic/foreign origin, which the NL model captures reasonably well. In other

applications, the most relevant aspects of consumer heterogeneity may not be captured well

by nesting parameters for groups or subgroups. In these cases, it is appropriate to estimate

RC models with random coe¢ cients for the most relevant continuous characteristics.

Second, our �ndings show that it is important to account for sources of market segmen-

tation that are not captured by the continuously measured characteristics in the RC model.

We established this by adding a nested logit structure to BLP�s random coe¢ cients model

(which is computationally simpler than adding random coe¤cients for the segment dummies

with other distributions). In future research one may also consider other tractable models

from the GEV family to capture additional sources of heterogeneity.
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Figures and tables

Figure 1: Relationship between heterogeneity parameters in the RC and NL model

The �gure shows the relationship between the mean of the estimated � in the misspeci�ed NL model
against the mean of the estimated �d in the correctly speci�ed RC model. The estimates are based
on 1,000 random samples of 50 markets and 25 products. The true model is the RC model with 10
di¤erent designs: �d = 0:5; 1; :::; 5.
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Table 1: Monte Carlo results set-up 1: RC model for discrete characteristic

Parameter True �d = 1 True �d = 5

Logit NL RC Logit NL RC

�x1 -2.00 -1.83 -2.00 -1.98 -1.16 -2.00

(0.04) (0.12) (0.04) (0.05) (0.18) (0.04)

�d n/a n/a 1.00 n/a n/a 5.05

(0.36) (0.45)

� n/a 0.09 n/a n/a 0.42 n/a

(0.08) (0.12)

Own elasticity -2.607 -2.610 -2.607 -2.579 -2.599 -2.582

(0.404) (0.405) (0.405) (0.400) (0.404) (0.404)

Cross elasticity same seg 0.037 0.042 0.043 0.037 0.052 0.056

(0.009) (0.012) (0.011) (0.009) (0.014) (0.014)

Cross elasticity di¤er seg 0.037 0.034 0.032 0.038 0.028 0.021

(0.010) (0.009) (0.008) (0.010) (0.008) (0.005)

Model selection criteria

GMM-AIC 1 263 736 0 6 994

GMM-BIC 2 262 736 0 6 994

The table reports the empirical means and standard deviations (in parentheses) of selected parameters, the
implied price elasticities.for T = 1, and two information criteria, GMM-BIC and GMM-AIC. The estimates
are based on 1,000 random samples of 50 markets and 25 products. The true model is the RC model of set-up
1 with two designs: �d = 1 and �d = 5:
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Table 2: Monte Carlo results set-up 2: RCNL model (one design)

Coe¢ cients True parameter Logit NL RC RCNL

�0 -1 -2.89 -0.16 -1.60 -1.00

(0.06) (0.20) (0.09) (0.16)

�d -2 -0.44 -5.66 -0.86 -2.01

(0.15) (0.46) (0.12) (0.30)

�x1 -3 -1.94 -0.31 -4.06 -2.99

(0.06) (0.13) (0.16) (0.27)

� 0.3 n/a 0.88 n/a 0.30

(0.07) (0.07)

�x1 1 n/a n/a 1.30 1.00

(0.06) (0.08)

Own elasticity -2.545 -3.347 -5.205 -5.344

(0.397) (1.513) (0.820) (0.860)

Cross elasticity same seg 0.028 0.093 0.083 0.112

(0.007) (0.058) (0.020) (0.032)

Cross elasticity di¤er seg 0.015 0.002 0.082 0.057

(0.004) (0.001) (0.024) (0.017)

Model selection criteria

AIC 0 0 0 1000

BIC 0 0 0 1000

The table reports the empirical means and standard deviations (in parentheses) of the parameters, the
implied price elasticities for T = 1, and two information criteria, GMM-BIC and GMM-AIC. The estimates
are based on 1,000 random samples of 50 markets and 25 products. The true model is the RCNL model of
set-up 2 with the following design: �x1 = 1:0 and � = 0:3; &xd = 0:9;  = 1.
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Table 3: Monte Carlo results set-up 2: own- and cross-elasticity under di¤erent designs of
RCNL model

Logit NL RC RCNL Logit NL RC RCNL
�x1 = 1:0 and � = 0:3 �x1 = 0:5 and � = 0:5

&xd = 0;  = 0
Own elasticity -2.355 -2.598 -5.412 -5.410 -5.761 -5.838 -7.694 -7.797
Cross elasticity same seg 0.020 0.064 0.086 0.123 0.041 0.113 0.071 0.144
Cross elasticity di¤er seg 0.021 0.005 0.090 0.063 0.043 0.015 0.073 0.035

&xd = 0:9;  = 0
Own elasticity -2.025 -2.383 -5.411 -5.411 -5.685 -5.745 -7.691 -7.721
Cross elasticity same seg 0.017 0.096 0.088 0.145 0.043 0.156 0.067 0.200
Cross elasticity di¤er seg 0.018 0.005 0.068 0.049 0.045 0.020 0.075 0.037

&xd = 0;  = 1
Own elasticity -2.396 -2.729 -5.380 -5.408 -5.747 -5.818 -7.645 -7.780
Cross elasticity same seg 0.025 0.048 0.099 0.114 0.050 0.080 0.082 0.113
Cross elasticity di¤er seg 0.016 0.004 0.065 0.044 0.033 0.014 0.056 0.027

&xd = 0:9;  = 1
Own elasticity -2.545 -3.347 -5.205 -5.344 -5.887 -5.879 -7.699 -7.573
Cross elasticity same seg 0.028 0.093 0.083 0.112 0.054 0.106 0.083 0.141
Cross elasticity di¤er seg 0.015 0.002 0.082 0.057 0.029 0.014 0.060 0.025

The table reports the empirical means and standard deviations (in parentheses) of the price elasticities for
T = 1. The estimates are based on 1,000 random samples of 50 markets and 25 products. The true model is
the RCNL model of set-up 2, with 8 di¤erent designs according to three criteria: (i) �x1 = 1:0 and � = 0:3,
or �x1 = 0:5 and � = 0:5; (ii) &xd = 0 or &xd = 0:9.;  = 0 or  = 1:

Table 4: Summary Statistics
All countries France Germany

Mean St. Dev. Mean St. Dev. Mean St. Dev.

Sales (units) 5,785 14,694 8,440 19,931 11,432 21,074
Price/Income 1.19 0.94 0.90 0.53 0.95 0.63
Horsepower (in kW) 88.8 40.9 87.7 37.4 92.8 44.6
Fuel e¢ ciency (e/100 km) 8.4 2.1 8.5 2.3 8.8 2.6
Width (cm) 173.0 8.5 173.1 8.5 173.4 8.6
Height (cm) 148.3 13.8 149.2 14.2 148.2 14.1
Foreign (0-1) 0.92 0.28 0.86 0.35 0.71 0.45
Months present (1-12) 9.89 2.55 9.70 2.65 9.77 2.56

The table reports means and standard deviations of the main variables. The total number of
observations (models/markets) is 18,643, where markets refer to the 9 countries and 9 years.
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Table 5: Summary Statistics by Segment

Segment Subc Comp Interm Stand Lux SUV Sport

Mean of the characteristics

Sales (units) 11,155 7,450 5,009 4,632 2,889 2,205 1,517
Price/Income 0.55 0.81 1.04 1.39 2.13 1.61 1.85
Horsepower (in kW) 48.7 70.1 84.6 99.6 134.0 113.7 126.6
Fuel e¢ ciency (e/100 km) 6.4 7.2 8.0 8.7 10.4 11.2 9.6
Width (cm) 162.5 171.4 175.3 175.1 182.3 179.4 175.1
Height (cm) 149.1 144.2 144.9 142.6 145.3 175.9 133.6
Foreign (0-1) 0.92 0.92 0.93 0.91 0.89 0.96 0.86
Months present (1-12) 9.72 9.87 9.88 9.77 9.94 10.11 10.03
Number of observations 3,788 4,095 2,656 1,711 1,764 2,521 2,108

Correct classi�cations into di¤erent marketing segments (in percent)

Subcompact - 93.7 99.4 99.9 100.0 95.5 97.6
Compact - 76.6 91.1 97.7 99.7 92.8
Intermediate - 77.9 91.4 99.7 91.0
Standard - 90.0 99.9 84.4
Luxury - 99.7 88.9
SUV - 99.9
Sports -

The top panel of the table reports means of the main variables per segment in the top panel. The bot-
tom panel of the table reports the percentage of correctly classi�ed car models, based on binary pro-
bit of a segment dummy per pair on four continuous characteristics (i.e. horsepower, fuel e¢ ciency,
width and height). Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard,
Lux=Luxury, SUV=Sport Utility Vehicle.
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Table 6: Parameter Estimates for Alternative Demand Models

Logit Nested Logit RC Logit RC Nested Logit

Param. St. Er. Param. St. Er. Param. St. Er. Param. St. Er.

Mean valuations for the characteristics in xjt (�)

Price/income -1.76 0.17 -1.00 0.03 -5.52 0.66 -2.75 0.18
Horsepower (kW/100) 2.30 0.24 1.34 0.08 -3.67 1.86 0.57 0.77
Fuel (e/10,000 km) -11.48 1.43 -6.13 0.52 -20.77 3.06 -4.68 0.73
Width (cm/100) 2.51 0.55 -0.10 0.29 3.64 0.83 1.26 0.50
Height (cm/100) 3.46 0.35 1.17 0.19 0.27 1.32 2.12 0.46
Foreign (0/1) -1.21 0.03 -0.47 0.04 -3.66 0.89 -0.57 0.14

Standard deviations of valuations for the characteristics in xjt (�)

Horsepower (kW/100) n/a n/a 4.67 0.83 0.92 0.41
Fuel (e/10,000 km) n/a n/a 1.15 1.69 1.66 0.57
Width (cm/100) n/a n/a 1.93 0.71 0.10 1.74
Height (cm/100) n/a n/a 4.83 0.55 0.15 1.11
Foreign (0/1) n/a n/a 5.46 1.05 0.22 0.84
Constant n/a n/a 1.18 0.43 0.21 3.00

Nesting parameters (�1 and �2)

Subsegment �1 n/a 0.65 0.03 n/a 0.57 0.03
Segment �2 n/a 0.48 0.03 n/a 0.47 0.07

Model �xed e¤ects Yes Yes Yes Yes
Market �xed e¤ects Yes Yes Yes Yes
Income distribution No No Yes Yes
Random coe¢ cients No No Yes Yes
# inelastic demands 3,514 (19%) 556 (3%) 0 0
�2 test �1 = �2 n/a 83.04 n/a 2.76
Prob.>�2 (0.00) (0.10)

The table shows the parameter estimates and standard errors for the di¤erent demand models. The logit
and NL models assume equal income (��=yt), the RC and RCNL models allow for heterogeneous income
(��=yi). The total number of observations (models/markets) is 18,643, where markets refer to the 9
countries and 9 years.
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Table 7: Likelihood Ratio Tests for Alternative Demand
Models

Logit Nested Logit RC Logit

Logit �

Nested Logit 584.08 �
(0.0000)

RC Logit 34.08 n/a �
(0.0000)

RC Nested Logit 534.10 30.61 423.84
(0.0000) (0.0002) (0.0000)

The table reports �2 statistics and P-values (in parentheses) of
likelihood ratio tests for di¤erent model pairs.
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Table 8: Product-level Price Elasticities in
Germany for Alternative Demand Models

Own- Cross-price elasticity
Segment same same di¤er

subseg seg seg
Logit

Subcompact -0.76 <0.01 <0.01 <0.01
Compact -1.09 <0.01 <0.01 <0.01
Intermediate -1.49 <0.01 <0.01 <0.01
Standard -1.94 <0.01 <0.01 <0.01
Luxury -2.94 <0.01 <0.01 <0.01
SUV -2.32 <0.01 <0.01 <0.01
Sports -2.73 <0.01 <0.01 <0.01

Nested Logit
Subcompact -1.23 0.02 0.01 <0.01
Compact -1.74 0.03 0.02 <0.01
Intermediate -2.38 0.05 0.03 <0.01
Standard -3.04 0.13 0.05 <0.01
Luxury -4.64 0.17 0.07 <0.01
SUV -3.73 0.05 0.04 <0.01
Sports -4.40 0.08 0.03 <0.01

RC Logit
Subcompact -2.85 0.03 <0.01 <0.01
Compact -3.66 0.02 <0.01 0.01
Intermediate -4.38 0.03 <0.01 0.01
Standard -4.96 0.04 0.01 0.01
Luxury -6.24 0.06 0.03 0.01
SUV -5.67 0.04 <0.01 0.01
Sports -6.13 0.02 <0.01 0.02

RC Nested Logit
Subcompact -2.57 0.03 0.03 <0.01
Compact -3.33 0.05 0.05 <0.01
Intermediate -3.90 0.06 0.06 <0.01
Standard -4.54 0.15 0.09 <0.01
Luxury -5.75 0.17 0.11 <0.01
SUV -5.01 0.07 0.06 <0.01
Sports -5.42 0.10 0.05 <0.01

The table reports product-level own- and cross-price
elasticities, based on the parameter estimates in Table
6. Elasticities are averages by segment for Germany
in 2006. Cross-price elasticities are averaged across
products from the same subsegment, from a di¤er-
ent subsegment within the same segment, and from
di¤erent segments.
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Table 9: Segment-level Price Elasticities in Germany for Alternative
Demand Models

Segment Subc Comp Interm Stand Lux SUV Sport

Logit

Subcompact -0.77 0.02 0.02 0.02 0.02 0.02 0.02
Compact 0.02 -1.12 0.02 0.02 0.02 0.02 0.02
Intermediate 0.01 0.01 -1.41 0.01 0.01 0.01 0.01
Standard 0.01 0.01 0.01 -1.75 0.01 0.01 0.01
Luxury 0.01 0.01 0.01 0.01 -2.59 0.01 0.01
SUV 0.01 0.01 0.01 0.01 0.01 -2.24 0.01
Sports <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -2.05

Nested Logit

Subcompact -0.44 0.01 0.01 0.01 0.01 0.01 0.01
Compact 0.01 -0.64 0.01 0.01 0.01 0.01 0.01
Intermediate <0.01 <0.01 -0.81 <0.01 <0.01 <0.01 <0.01
Standard <0.01 <0.01 <0.01 -1.00 <0.01 <0.01 <0.01
Luxury <0.01 <0.01 <0.01 <0.01 -1.48 <0.01 0.01
SUV <0.01 <0.01 <0.01 <0.01 <0.01 -1.28 <0.01
Sports <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -1.17

RC Logit

Subcompact -1.72 0.67 0.47 0.19 0.07 0.33 0.29
Compact 0.75 -2.77 0.66 0.54 0.26 0.39 0.41
Intermediate 0.29 0.39 -3.47 0.43 0.30 0.45 0.42
Standard 0.12 0.32 0.44 -3.55 0.56 0.43 0.45
Luxury 0.05 0.16 0.32 0.61 -4.05 0.86 0.67
SUV 0.15 0.18 0.37 0.43 0.92 -4.13 0.75
Sports 0.08 0.11 0.20 0.25 0.42 0.49 -4.36

RC Nested Logit

Subcompact -1.08 0.04 0.04 0.04 0.04 0.04 0.04
Compact 0.04 -1.42 0.05 0.06 0.06 0.06 0.05
Intermediate 0.03 0.03 -1.65 0.04 0.04 0.04 0.04
Standard 0.03 0.03 0.04 -1.90 0.05 0.05 0.05
Luxury 0.03 0.04 0.05 0.06 -2.37 0.08 0.07
SUV 0.03 0.04 0.05 0.06 0.08 -2.12 0.07
Sports 0.02 0.02 0.03 0.03 0.04 0.04 -2.03

The table reports the segment-level own- and cross-price elasticities (when
all products in the same segment raise their price by 1%), based on the
parameter estimates in Table 6. The elasticities refer to Germany in
2006. Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard,
Lux=Luxury, SUV=Sport Utility Vehicle.

38



Table 10: Relevant Market De�nition in France and Germany

Logit Nested Logit RC Logit RC Nested Logit

France Germany France Germany France Germany France Germany

Panel A: Candidate markets are segments

Subcompact -0.1 -0.2 5.0 6.7 4.5 4.9 8.8 11.0
Compact -0.6 -0.5 7.2 8.7 -5.1 -1.4 10.8 12.6
Intermediate -1.0 -1.0 7.4 8.4 -8.6 -5.3 10.4 10.4
Standard -1.6 -1.5 13.5 11.1 -7.8 -5.1 16.3 13.3
Luxury -3.4 -3.2 16.2 15.0 -9.5 -5.9 16.6 15.2
SUV -2.4 -2.6 16.5 15.7 2.9 -5.9 18.1 16.0
Sports -1.4 -2.4 10.1 13.9 -11.2 -9.1 12.6 14.2

Panel B: Candidate markets are selected products�10 closest substitutes

VW Polo -0.4 -1.0 2.0 3.4 1.4 2.6 3.3 4.0
VW Golf -0.4 -1.0 4.5 6.8 -1.6 2.6 6.0 8.3
VW Passat -0.4 -1.0 4.0 5.1 -1.4 -0.5 4.8 5.5
Audi A4 -0.4 -1.0 10.8 10.1 -3.5 -1.3 12.3 11.7
Audi A6 -0.4 -1.0 11.8 13.5 -3.3 -2.3 10.7 13.1
BMW X3 -0.4 -1.1 5.5 7.7 -4.6 -1.6 2.0 4.3
Mercedes SLK-Class -0.4 -1.1 4.0 5.0 -5.2 -2.3 3.4 1.1

The table reports percentage pro�t increases implied by a joint 10% price increase of all products in
the same segment (Panel A) and for selected products�10 closest substitutes (Panel B). The results
are based on the parameter estimates in Table 6, assuming marginal costs implied by multiprod-
uct Bertrand competition. The e¤ects refer to France and Germany in 2006. Subc=subcompact,
Comp=compact, Interm=intermediate, Stand=standard, Lux=Luxury, SUV=Sport Utility Vehicle.

39



Table 11: The E¤ects of Two Hypothetical Mergers in France and
Germany

France All Subc Comp Interm Stand Lux SUV Sport

PSA�Renault merger in France

Domestic market shares (in percent)

PSA 33.4 35.3 38.8 46.0 - 19.1 - 37.3

Renault 22.7 29.8 20.9 17.8 - 9.5 - 13.5

Predicted domestic price increase (in percent)

Logit 0.9 1.6 0.9 0.75 0.0 0.2 0.0 0.5

Nested Logit 15.5 31.2 13.5 12.8 0.0 2.1 0.0 7.0

RC Logit 20.2 37.1 22.6 24.1 0.6 4.8 0.1 14.0

RC Nested Logit 8.3 15.9 8.0 8.2 -0.1 1.5 -0.1 4.5

Germany VW-BMW merger in Germany

Domestic market shares (in percent)

BMW 10.6 2.1 7.9 - 39.6 25.3 15.2 10.8

VW 30.8 23.1 36.3 53.8 31.3 32.4 12.0 21.4

Predicted domestic price increase (in percent)

Logit 0.3 0.3 0.4 0.3 0.6 0.3 0.2 0.2

Nested Logit 2.9 0.6 2.8 0.1 10.0 4.3 1.6 1.1

RC Logit 2.2 0.6 2.0 1.8 4.9 3.2 1.7 1.5

RC Nested Logit 1.9 0.6 1.8 0.5 5.8 3.0 1.1 0.9

The table reports percentage price increases for two hypothetical mergers, PSA�
Renault and BMW�VW, in their domestic markets France and Germany, based on
the parameter estimates in Table 6 and assuming multiproduct Bertrand compe-
tition. The e¤ects refer to France and Germany in 2006. 95% con�dence inter-
vals, based on a bootstrapping procedure, are shown in Appendix B. For example,
the 95% con�dence interval for the overall predicted price increase after the PSA�
Renault merger is [0.7�1.8]% for the logit, [12.5�18.3]% for the NL, [14.6�27.2]% for
the RC and [5.4�15.7]% for the RCNL model. Subc=subcompact, Comp=compact,
Interm=intermediate, Stand=standard, Lux=Luxury, SUV=Sport Utility Vehicle.
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A Appendix. Contraction mapping for nested logit

model

In this Appendix we show how to modify BLP�s contraction mapping to solve the demand

system s = s(�) in the random coe¢ cients nested logit model, with a nesting parameter �.

To simplify the exposition, we consider a nested logit without random coe¢ cients, so � = 0.

Note that in this case there is an analytic solution for s = s(�) (Berry (1994), so a contraction

mapping is not actually needed. The analysis below straightforwardly generalizes to the case

where � 6= 0.

BLP�s original contraction mapping BLP showed that the function f(�), de�ned point-

wise by

fj(�) � �j + ln(sj)� ln(sj(�));

is a contraction mapping with modulus less than 1 when the demand system s = s(�) is given

by the (random coe¢ cients) logit model, where the nesting parameter � = 0. To satisfy the

conditions of their theorem, it is required that fj is di¤erentiable and satis�es the following

monotonicity conditions

@fj
@�j

= 1� 1

sj

@sj
@�j

� 0

@fj(�)

@�k
= � 1

sj

@sj
@�k

� 0, k 6= j (11)

JX
k=1

@fj
@�k

� 1 = 1

sj

JX
k=1

@sj
@�k

< 0:

To assess whether these conditions are satis�ed for the nested logit model, note �rst that

the demand derivatives are given by

@sj
@�j

=

�
1

1� � �
�

1� �sjjg � sj
�
sj

@sj
@�k

=

�
� �

1� �skjg � sk
�
sj for j; k in the same group g

@sj
@�k

= �sksj for j; k in a di¤erent group g.
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Substituting these derivatives in (11) and rearranging shows that

@fj
@�j

� 0, � � sj
1� sjjg + sj

@fj
@�k

� 0,
�
1��skjg + sk � 0 for j; k in the same group g

sk � 0 for j; k in a di¤erent group g
JX
k=1

@fj
@�k

� 1 < 0 , s0 > 0;

where s0 = 1 �
PJ

k=1 sk is the market share of the outside good. The second and third

inequality are satis�ed. However, the �rst inequality is only satis�ed for � su¢ ciently close

to 0, so that BLP�s function f(�) is not necessarily a contraction mapping for the nested

logit model.

Modi�ed contraction mapping Consider the following modi�cation of BLP�s original

function f(�)

fj(�) � �j + (1� �)(ln(sj)� ln(sj(�)));

which dampens the original function by (1� �).
The monotonicity conditions of BLP�s theorem become

@fj
@�j

= 1� (1� �) 1
sj

@sj
@�j

� 0

@fj(�)

@�k
= �(1� �) 1

sj

@sj
@�k

� 0, k 6= j

JX
k=1

@fj
@�k

� 1 = (1� �) 1
sj

JX
k=1

@sj
@�k

< 0:

The second and third condition remain satis�ed as in the orginal contraction mapping for

0 � � < 1. To verify the �rst condition, substitute the above derivative for @sj=@�j to obtain

@fj
@�j

= 1� (1� �)
�

1

1� � �
�

1� �sjjg � sj
�

= �sjjg + (1� �)sj � 0

for 0 � � � 1. Hence, the modi�ed function satis�es BLP�s monotonicity conditions, and

we use this as a contraction mapping to solve the (random coe¢ cients) nested logit demand

system. Note that the dampening for the contraction mapping implies a larger value for the
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Lipschitz constant and thus a slower rate of convergence, especially as � approaches 1.
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B Appendix

See separate document.
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